37 research outputs found

    Opportunities for Public Aquariums to Increase the Sustainability of the Aquatic Animal Trade

    Get PDF
    The global aquatic pet trade encompasses a wide diversity of freshwater and marine organisms. While relying on a continual supply of healthy, vibrant aquatic animals, few sustainability initiatives exist within this sector. Public aquariums overlap this industry by acquiring many of the same species through the same sources. End users are also similar, as many aquarium visitors are home aquarists. Here we posit that this overlap with the pet trade gives aquariums significant opportunity to increase the sustainability of the trade in aquarium fishes and invertebrates. Improving the sustainability ethos and practices of the aquatic pet trade can carry a conservation benefit in terms of less waste, and protection of intact functioning ecosystems, at the same time as maintaining its economic and educational benefits and impacts. The relationship would also move forward the goal of public aquariums to advance aquatic conservation in a broad sense. For example, many public aquariums in North America have been instrumental in working with the seafood industry to enact positive change toward increased sustainability. The actions include being good consumers themselves, providing technical knowledge, and providing educational and outreach opportunities. These same opportunities exist for public aquariums to partner with the ornamental fish trade, which will serve to improve business, create new, more ethical and more dependable sources of aquatic animals for public aquariums, and perhaps most important, possibly transform the home aquarium industry from a threat, into a positive force for aquatic conservation. Zoo Biol. 32:1-12, 2013. © 2012 Wiley Periodicals, Inc

    Biomarkers of coagulation, endothelial function, and fibrinolysis in critically ill patients with COVID-19: A single-center prospective longitudinal study

    Get PDF
    Background: Immunothrombosis and coagulopathy in the lung microvasculature may lead to lung injury and disease progression in coronavirus disease 2019 (COVID-19). We aim to identify biomarkers of coagulation, endothelial function, and fibrinolysis that are associated with disease severity and may have prognostic potential. Methods: We performed a single-center prospective study of 14 adult COVID-19(+) intensive care unit patients who were age- and sex-matched to 14 COVID-19(−) intensive care unit patients, and healthy controls. Daily blood draws, clinical data, and patient characteristics were collected. Baseline values for 10 biomarkers of interest were compared between the three groups, and visualized using Fisher\u27s linear discriminant function. Linear repeated-measures mixed models were used to screen biomarkers for associations with mortality. Selected biomarkers were further explored and entered into an unsupervised longitudinal clustering machine learning algorithm to identify trends and targets that may be used for future predictive modelling efforts. Results: Elevated D-dimer was the strongest contributor in distinguishing COVID-19 status; however, D-dimer was not associated with survival. Variable selection identified clot lysis time, and antigen levels of soluble thrombomodulin (sTM), plasminogen activator inhibitor-1 (PAI-1), and plasminogen as biomarkers associated with death. Longitudinal multivariate k-means clustering on these biomarkers alone identified two clusters of COVID-19(+) patients: low (30%) and high (100%) mortality groups. Biomarker trajectories that characterized the high mortality cluster were higher clot lysis times (inhibited fibrinolysis), higher sTM and PAI-1 levels, and lower plasminogen levels. Conclusions: Longitudinal trajectories of clot lysis time, sTM, PAI-1, and plasminogen may have predictive ability for mortality in COVID-19

    Integrin-mediated Ras–Extracellular Regulated Kinase (ERK) Signaling Regulates Interferon γ Production in Human Natural Killer Cells

    Get PDF
    Recent evidence indicates that integrin engagement results in the activation of biochemical signaling events important for regulating different cell functions, such as migration, adhesion, proliferation, differentiation, apoptosis, and specific gene expression. Here, we report that β1 integrin ligation on human natural killer (NK) cells results in the activation of Ras/mitogen-activated protein kinase pathways. Formation of Shc–growth factor receptor–bound protein 2 (Grb2) and Shc–proline-rich tyrosine kinase 2–Grb2 complexes are the receptor-proximal events accompanying the β1 integrin–mediated Ras activation. In addition, we demonstrate that ligation of β1 integrins results in the stimulation of interferon γ (IFN-γ) production, which is under the control of extracellular signal–regulated kinase 2 activation. Overall, our data indicate that β1 integrins, by delivering signals capable of triggering IFN-γ production, may function as NK-activating receptors

    p53-dependent chemokine production by senescent tumor cells supports NKG2D-dependent tumor elimination by natural killer cells

    Full text link
    The induction of cellular senescence is an important mechanism by which p53 suppresses tumorigenesis. Using a mouse model of liver carcinoma, where cellular senescence is triggered in vivo by inducible p53 expression, we demonstrated that NK cells participate in the elimination of senescent tumors. The elimination of senescent tumor cells is dependent on NKG2D. Interestingly, p53 restoration neither increases ligand expression nor increases the sensitivity to lysis by NK cells. Instead, p53 restoration caused tumor cells to secrete various chemokines with the potential to recruit NK cells. Antibody-mediated neutralization of CCL2, but not CCL3, CCL4 or CCL5, prevented NK cell recruitment to the senescent tumors and reduced their elimination. Our findings suggest that elimination of senescent tumors by NK cells occurs as a result of the cooperation of signals associated with p53 expression or senescence, which regulate NK cell recruitment, and other signals that induce NKG2D ligand expression on tumor cells

    The Human Cell Atlas White Paper

    Get PDF
    The Human Cell Atlas (HCA) will be made up of comprehensive reference maps of all human cells - the fundamental units of life - as a basis for understanding fundamental human biological processes and diagnosing, monitoring, and treating disease. It will help scientists understand how genetic variants impact disease risk, define drug toxicities, discover better therapies, and advance regenerative medicine. A resource of such ambition and scale should be built in stages, increasing in size, breadth, and resolution as technologies develop and understanding deepens. We will therefore pursue Phase 1 as a suite of flagship projects in key tissues, systems, and organs. We will bring together experts in biology, medicine, genomics, technology development and computation (including data analysis, software engineering, and visualization). We will also need standardized experimental and computational methods that will allow us to compare diverse cell and tissue types - and samples across human communities - in consistent ways, ensuring that the resulting resource is truly global. This document, the first version of the HCA White Paper, was written by experts in the field with feedback and suggestions from the HCA community, gathered during recent international meetings. The White Paper, released at the close of this yearlong planning process, will be a living document that evolves as the HCA community provides additional feedback, as technological and computational advances are made, and as lessons are learned during the construction of the atlas

    Impulse facilities for the simulation of hypersonic radiating flows

    Get PDF
    At high flight speeds, radiation becomes an important component of aerodynamic heat transfer, and its coupling with the flow field can significantly change macroscopic features of the flow. As radiating flight conditions are typically encountered in reentry trajectories, the associated flight regimes range from rarefied to continuum, and may have many levels of thermal, chemical and electronic non-equilibrium

    Altered hepatic genes related to retinol metabolism and plasma retinol in patients with non-alcoholic fatty liver disease.

    No full text
    Non-alcoholic fatty liver disease (NAFLD), especially non-alcoholic steatohepatitis (NASH) is a chronic liver disease commonly associated with hepatic fibrosis. NASH patients have an increased risk for hepatocellular carcinoma (HCC). An altered retinol metabolism is one of the pathways involved in the process of hepatic fibrosis, and enzymes involved in retinol metabolism have been associated with HCC. We aimed to determine the association between plasma retinol levels and hepatic expression of genes related to retinol metabolism, as well as to assess the hepatic expression of transcription factors regulated by retinoic acid in patients with NAFLD. Cross-sectional study where hepatic gene expression (Illumina microarray) and plasma retinol levels (HPLC) were measured in 17 patients with simple steatosis (SS), 15 with NASH, and 22 living liver donors (LD) as controls. Plasma retinol levels were higher in SS (1.53 ± 0.44 μmol/L) and NASH (1.51 ± 0.56 μmol/L) compared to LD (1.21 ± 0.38 μmol/L; p<0.05). AKR1B10 was highly overexpressed in NASH compared to SS (+6.2-fold) and LD (+9.9-fold; p = 4.89E-11). Retinaldehyde dehydrogenase 1 family, member A2 (ALDH1A2) and retinaldehyde dehydrogenase 1 family, member A3 (ALDH1A3), key enzymes for retinoic acid synthesis, were underexpressed in SS (-1.48 and -2.3-fold, respectively) and NASH (-1.47 and -2.6-fold, respectively) versus LD. In NASH, hepatic ALDH1A2 and ALDH1A3 were underexpressed and inversely correlated with plasma retinol levels, which may reduce retinoic acid in the liver. This, in addition to changes in expression of other genes involved in retinol metabolism, suggests a role for altered retinol homeostasis in NASH

    Intestinal Microbiota in Patients with Non-Alcoholic Fatty Liver Disease

    No full text
    Despite evidence that the intestinal microbiota (IM) is involved in the pathogenesis of obesity, the IM composition of patients with non-alcoholic fatty liver disease (NAFLD) has not been well characterized. This prospective, cross-sectional study was aimed at identifying differences in IM between adults with biopsy-proven NAFLD (simple steatosis [SS] or non-alcoholic steatohepatitis [NASH]) and living liver donors as healthy controls (HC). Fifty subjects were included: 11 SS, 22 NASH and 17 HC. One stool sample was collected from each participant. Quantitative real-time polymerase chain reaction was used to measure total bacterial counts, Bacteroides/Prevotella (here on referred to as Bacteroidetes), C. leptum, C. coccoides, bifidobacteria, E. coli and Archaea in stool. Clinical and laboratory data, food-records, and activity logs were collected. Patients with NASH had a lower percentage of Bacteroidetes (Bacteroidetes to total bacteria counts) compared to both SS and HC (p=0.006) and higher fecal C. coccoides compared to those with SS (p=0.04). There were no differences in the remaining microorganisms. As body mass index (BMI) and dietary fat intake differed between the groups (p<0.05), we performed linear regression adjusting for these variables. The difference in C. coccoides was no longer significant after adjusting for BMI and fat intake. However, there continued to be a significant association between the presence of NASH and lower percentage Bacteroidetes even after adjusting for these variables (p= 0.002; 95% CI= -0.06 to -0.02). Conclusion: There is an inverse and diet-/BMI-independent association between the presence of NASH and percentage Bacteroidetes in the stool, suggesting that the IM may play a role in the development of NAFLD.Canadian Institutes of Health Research (Grants NMD-86922, MOP-89705, MOP-123459
    corecore