56 research outputs found

    Spallation reactions. A successful interplay between modeling and applications

    Get PDF
    The spallation reactions are a type of nuclear reaction which occur in space by interaction of the cosmic rays with interstellar bodies. The first spallation reactions induced with an accelerator took place in 1947 at the Berkeley cyclotron (University of California) with 200 MeV deuterons and 400 MeV alpha beams. They highlighted the multiple emission of neutrons and charged particles and the production of a large number of residual nuclei far different from the target nuclei. The same year R. Serber describes the reaction in two steps: a first and fast one with high-energy particle emission leading to an excited remnant nucleus, and a second one, much slower, the de-excitation of the remnant. In 2010 IAEA organized a worskhop to present the results of the most widely used spallation codes within a benchmark of spallation models. If one of the goals was to understand the deficiencies, if any, in each code, one remarkable outcome points out the overall high-quality level of some models and so the great improvements achieved since Serber. Particle transport codes can then rely on such spallation models to treat the reactions between a light particle and an atomic nucleus with energies spanning from few tens of MeV up to some GeV. An overview of the spallation reactions modeling is presented in order to point out the incomparable contribution of models based on basic physics to numerous applications where such reactions occur. Validations or benchmarks, which are necessary steps in the improvement process, are also addressed, as well as the potential future domains of development. Spallation reactions modeling is a representative case of continuous studies aiming at understanding a reaction mechanism and which end up in a powerful tool.Comment: 59 pages, 54 figures, Revie

    Mechanical forces induce an asthma gene signature in healthy airway epithelial cells

    Get PDF
    Bronchospasm compresses the bronchial epithelium, and this compressive stress has been implicated in asthma pathogenesis. However, the molecular mechanisms by which this compressive stress alters pathways relevant to disease are not well understood. Using air-liquid interface cultures of primary human bronchial epithelial cells derived from non-asthmatic donors and asthmatic donors, we applied a compressive stress and then used a network approach to map resulting changes in the molecular interactome. In cells from non-asthmatic donors, compression by itself was sufficient to induce inflammatory, late repair, and fibrotic pathways. Remarkably, this molecular profile of non-asthmatic cells after compression recapitulated the profile of asthmatic cells before compression. Together, these results show that even in the absence of any inflammatory stimulus, mechanical compression alone is sufficient to induce an asthma-like molecular signature

    TRY plant trait database – enhanced coverage and open access

    Get PDF
    Plant traits—the morphological, anatomical, physiological, biochemical and phenological characteristics of plants—determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits—almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Expect the unexpected: practicalities and problems of a PDA project

    No full text
    No abstract available

    Strategic test-day recording regimes to estimate lactation yield in tropical dairy animals

    Get PDF
    Background In developing dairy sectors, genetic improvement programs have limited resources and recording of herds is minimal. This study evaluated different methods to estimate lactation yield and sampling schedules with fewer test-day records per lactation to determine recording regimes that (1) estimate lactation yield with a minimal impact on the accuracy of selection and (2) optimise the available resources. Methods Using Sahiwal cattle as a tropical dairy breed example, weekly milk records from 464 cows were used in a simulation study to generate different shaped lactation curves. The daily milk yields from these simulated lactation curves were subset to equally spaced (weekly, monthly and quarterly) and unequally spaced (with four, five or six records per lactation) test-day intervals. Lactation yield estimates were calculated from these subsets using two methods: the test-interval method and Wood’s (Nature 216:164-165, 1967) lactation curve model. Using the resulting lactation yields, breeding values were predicted and comparisons were made between the sampling regimes and estimation methods. Results The results show that, based on the mean square error of prediction, use of Wood’s lactation curve model to estimate total yield was more accurate than use of the test-interval method. However, the differences in the ranking of animals were small, i.e. a 1 to 5% difference in accuracy. Comparisons between the different test-day sampling regimes showed that, with the same number of records per lactation (for example, quarterly and four test-days), strategically timed test-days can result in more accurate estimates of lactation yield than test-days at equal intervals. Conclusions An important outcome of these results is that combining Wood’s model for lactation yield estimation and as few as four, five or six strategically placed test-day records can produce estimates of lactation yield that are comparable with estimates based on monthly test-day records using the test-interval method. Furthermore, calculations show that although using fewer test-days results in a decrease in the accuracy of selection, it does provide an opportunity to progeny-test more sires. Thus, using strategically timed test-days and Wood’s model to estimate lactation yield, can lead to a more efficient use of the allocated resources

    Selecting an appropriate genetic evaluation model for selection in a developing dairy sector

    No full text
    This study aimed to identify genetic evaluation models (GEM) to accurately select cattle for milk production when only limited data are available. It is based on a data set from the Pakistani Sahiwal progeny testing programme which includes records from five government herds, each consisting of 100 to 350 animals, with lactation records dating back to 1968. Different types of GEM were compared, namely: (1) multivariate v. repeatability model when using the first three lactations, (2) an animal v. a sire model, (3) different fixed effects models to account for effects such as herd, year and season; and (4) fitting a model with genetic parameters fixed v. estimating the genetic parameters as part of the model fitting process. Two methods were used for the comparison of models. The first method used simulated data based on the Pakistani progeny testing system and compared estimated breeding values with true breeding values. The second method used cross-validation to determine the best model in subsets of actual Australian herd-recorded data. Subsets were chosen to reflect the Pakistani data in terms of herd size and number of herds. Based on the simulation and the cross-validation method, the multivariate animal model using fixed genetic parameters was generally the superior GEM, but problems arise in determining suitable values for fixing the parameters. Using mean square error of prediction, the best fixed effects structure could not be conclusively determined. The simulation method indicated the simplest fixed effects structure to be superior whereas in contrast, the cross-validation method on actual data concluded that the most complex one was the best. In conclusion it is difficult to propose a universally best GEM that can be used in any data set of this size. However, some general recommendations are that it is more appropriate to estimate the genetic parameters when evaluating for selection purposes, the animal model was superior to the sire model and that in the Pakistani situation the repeatability model is more suitable than a multivariate

    Mitochondrial DNA mutations at nucleotide 8993 show a lack of tissue- or age-related variation

    No full text
    Two pathogenic mitochondrial DNA mutations, a T-to-G substitution (8993T > G) and a T-to-C substitution (8993T > C), at nucleotide 8993 have been reported. We describe 13 pedigrees with mitochondrial DNA mutations at nucleotide 8993; 10 pedigrees with the 8993T > G mutation and three with the 8993T > C mutation. Prenatal diagnosis of the nucleotide 8993 mutations is technically possible. However, there are three major concerns: (i) that there is variation in mutant loads among tissues; (ii) that the mutant load in a tissue may change over time; and (iii) that the genotype-phenotype correlation is not clearly understood. We have used the 13 pedigrees to determine specifically the extent of tissue- and age-related variation of the two mutations at nucleotide 8993 in the mitochondrial DNA. The tissue variation was investigated by analysing two or more different tissues from a total of 18 individuals. The age-related variation of the mutation was investigated by comparing the amount of both mutations in blood taken at birth and at a later age. No substantial tissue variation was found, nor was there any substantial change in the proportion of either mutation over periods of 8-23 years in the four individuals studied. In addition, we noted that two features were remarkably common in families with nucleotide 8993 mutations, namely (i) unexplained infant death (8 cases in 13 pedigrees), and (ii) de novo mutations (5 of the 10 8993T > G pedigrees)
    • 

    corecore