728 research outputs found
New Young Star Candidates in BRC 27 and BRC 34
We used archival Spitzer Space Telescope mid-infrared data to search for young stellar objects (YSOs) in the immediate vicinity of two bright-rimmed clouds, BRC 27 (part of CMa R1) and BRC 34 (part of the IC 1396 complex). These regions both appear to be actively forming young stars, perhaps triggered by the proximate OB stars. In BRC 27, we find clear infrared excesses around 22 of the 26 YSOs or YSO candidates identified in the literature, and identify 16 new YSO candidates that appear to have IR excesses. In BRC 34, the one literature-identified YSO has an IR excess, and we suggest 13 new YSO candidates in this region, including a new Class I object. Considering the entire ensemble, both BRCs are likely of comparable ages, within the uncertainties of small number statistics and without spectroscopy to confirm or refute the YSO candidates. Similarly, no clear conclusions can yet be drawn about any possible age gradients that may be present across the BRCs
Classical Coulomb three-body problem in collinear eZe configuration
Classical dynamics of two-electron atom and ions H, He, Li,
Be,... in collinear eZe configuration is investigated. It is revealed
that the mass ratio between necleus and electron plays an important role
for dynamical behaviour of these systems. With the aid of analytical tool and
numeircal computation, it is shown that thanks to large mass ratio ,
classical dynamics of these systems is fully chaotic, probably hyperbolic.
Experimental manifestation of this finding is also proposed.Comment: Largely rewritten. 21 pages. All figures are available in
http://ace.phys.h.kyoto-u.ac.jp/~sano/3-body/index.htm
Photometric Accretion Signatures Near the Substellar Boundary
Multi-epoch imaging of the Orion equatorial region by the Sloan Digital Sky
Survey has revealed that significant variability in the blue continuum persists
into the late-M spectral types, indicating that magnetospheric accretion
processes occur below the substellar boundary in the Orion OB1 association. We
investigate the strength of the accretion-related continuum veiling by
comparing the reddening-invariant colors of the most highly variable stars
against those of main sequence M dwarfs and evolutionary models. A gradual
decrease in the g band veiling is seen for the cooler and less massive members,
as expected for a declining accretion rate with decreasing mass. We also see
evidence that the temperature of the accretion shock decreases in the very low
mass regime, reflecting a reduction in the energy flux carried by the accretion
columns. We find that the near-IR excess attributed to circumstellar disk
thermal emission drops rapidly for spectral types later than M4. This is likely
due to the decrease in color contrast between the disk and the cooler stellar
photosphere. Since accretion, which requires a substantial stellar magnetic
field and the presence of a circumstellar disk, is inferred for masses down to
0.05 Msol we surmise that brown dwarfs and low mass stars share a common mode
of formation.Comment: 37 pages, 14 figures, accepted by A
The V1647 Orionis (IRAS 05436â0007) Protostar and Its Environment
We present Sloan Digital Sky Survey and United States Naval Observatory observations of the V1647 Ori protostar and surrounding field near NGC 2068. V1647 Ori, the likely driving source for HH 23, brightened significantly in November 2003. Analysis of SDSS imaging acquired in November 1998 and February 2002 during the quiescent state, recent USNO photometry, and published 2MASS and Gemini data shows that the color changes associated with brightening suggest an EXor outburst rather than a simple dust clearing event
Multiwavelength study of the high-latitude cloud L1642: chain of star formation
L1642 is one of the two high galactic latitude (|b| > 30deg) clouds confirmed
to have active star formation. We examine the properties of this cloud,
especially the large-scale structure, dust properties, and compact sources in
different stages of star formation. We present high-resolution far-infrared and
submm observations with the Herschel and AKARI satellites and mm observations
with the AzTEC/ASTE telescope, which we combined with archive data from near-
and mid-infrared (2MASS, WISE) to mm observations (Planck). The Herschel
observations, combined with other data, show a sequence of objects from a cold
clump to young stellar objects at different evolutionary stages. Source B-3
(2MASS J04351455-1414468) appears to be a YSO forming inside the L1642 cloud,
instead of a foreground brown dwarf, as previously classified. Herschel data
reveal striation in the diffuse dust emission around L1642. The western region
shows striation towards NE and has a steeper column density gradient on its
southern side. The densest central region has a bow-shock like structure
showing compression from the west and a filamentary tail extending towards
east. The differences suggest that these may be spatially distinct structures,
aligned only in projection. We derive values of the dust emission cross-section
per H nucleon for different regions of the cloud. Modified black-body fits to
the spectral energy distribution of Herschel and Planck data give emissivity
spectral index beta values 1.8-2.0 for the different regions. The compact
sources have lower beta values and show an anticorrelation between T and beta.
Markov chain Monte Carlo calculations demonstrate the strong anticorrelation
between beta and T errors and the importance of mm Planck data in constraining
the estimates. L1642 reveals a more complex structure and sequence of star
formation than previously known.Comment: 22 pages, 18 figures, accepted to Astronomy & Astrophysics; abstract
shortened and figures reduced for astrop
Galactic cold cores: Herschel study of first Planck detections
Context. We present the first results from the project Galactic cold cores, where the cold interstellar clouds detected by the Planck satellite are studied with Herschel photometric observations. The final Planck catalogue is expected to contain several thousand sources. The Herschel observations during the science demonstration phase provided the first glimpse into the nature of these sources.
Aims. The main goal of the project is to derive the physical properties of the cold core population revealed by Planck. We examine three fields and confirm the Planck detections with Herschel data, which we also use to establish the evolutionary stage of the identified
cores.
Methods. We study the morphology and spectral energy distribution of the sources using the combined wavelength coverage of Planck and Herschel. The dust colour temperatures and emissivity indices are determined. The masses of the cores are determined with distance estimates which are taken from the literature and are confirmed by kinematic and extinction information.
Results. The observations reveal extended regions of cold dust with dust colour temperatures down to T_(dust) ~ 11 K. The fields represent different evolutionary stages ranging from a quiescent, cold filament inMusca to regions of active star formation in Cepheus.
Conclusions. The Herschel observations confirm that the all-sky survey of Planck is capable of making a large number of new cold core detections. Our results suggest that many of the sources may already have left the pre-stellar phase or are at least closely associated
with active star formation. High-resolution Herschel observations are needed to establish the true nature of the Planck detections
Planck 2015 results. XVII. Constraints on primordial non-Gaussianity
The Planck full mission cosmic microwave background (CMB) temperature and E-mode polarization maps are analysed to obtain constraints on primordial non-Gaussianity (NG). Using three classes of optimal bispectrum estimators â separable template-fitting (KSW), binned, and modal â we obtain consistent values for the primordial local, equilateral, and orthogonal bispectrum amplitudes, quoting as our final result from temperature alone Æ^(local)_(NL) = 2.5 ± 5.7, Æ^(equil)_(NL)= -16 ± 70, , and Æ^(ortho)_(NL) = -34 ± 32 (68% CL, statistical). Combining temperature and polarization data we obtain Æ^(local)_(NL) = 0.8 ± 5.0, Æ^(equil)_(NL)= -4 ± 43, and Æ^(ortho)_(NL) = -26 ± 21 (68% CL, statistical). The results are based on comprehensive cross-validation of these estimators on Gaussian and non-Gaussian simulations, are stable across component separation techniques, pass an extensive suite of tests, and are consistent with estimators based on measuring the Minkowski functionals of the CMB. The effect of time-domain de-glitching systematics on the bispectrum is negligible. In spite of these test outcomes we conservatively label the results including polarization data as preliminary, owing to a known mismatch of the noise model in simulations and the data. Beyond estimates of individual shape amplitudes, we present model-independent, three-dimensional reconstructions of the Planck CMB bispectrum and derive constraints on early universe scenarios that generate primordial NG, including general single-field models of inflation, axion inflation, initial state modifications, models producing parity-violating tensor bispectra, and directionally dependent vector models. We present a wide survey of scale-dependent feature and resonance models, accounting for the âlook elsewhereâ effect in estimating the statistical significance of features. We also look for isocurvature NG, and find no signal, but we obtain constraints that improve significantly with the inclusion of polarization. The primordial trispectrum amplitude in the local model is constrained to be g^(local)_(NL) = (â9.0±7.7)Ă10^4 (68% CL statistical), and we perform an analysis of trispectrum shapes beyond the local case. The global picture that emerges is one of consistency with the premises of the ÎCDM cosmology, namely that the structure we observe today was sourced by adiabatic, passive, Gaussian, and primordial seed perturbations
Planck 2015 results. VIII. High Frequency Instrument data processing: Calibration and maps
This paper describes the processing applied to the cleaned, time-ordered information obtained from the Planck High Frequency Instrument (HFI) with the aim of producing photometrically calibrated maps in temperature and (for the first time) in polarization. The data from the entire 2.5-year HFI mission include almost five full-sky surveys. HFI observes the sky over a broad range of frequencies, from 100 to 857âGHz. To obtain the best accuracy on the calibration over such a large range, two different photometric calibration schemes have been used. The 545 and 857âGHz data are calibrated using models of planetary atmospheric emission. The lower frequencies (from 100 to 353âGHz) are calibrated using the time-variable cosmological microwave background dipole, which we call the orbital dipole. This source of calibration only depends on the satellite velocity with respect to the solar system. Using a CMB temperature of T_(CMB) = 2.7255 ± 0.0006 K, it permits an independent measurement of the amplitude of the CMB solar dipole (3364.3 ± 1.5 ÎŒK), which is approximatively 1Ï higher than the WMAP measurement with a direction that is consistent between the two experiments. We describe the pipeline used to produce the maps ofintensity and linear polarization from the HFI timelines, and the scheme used to set the zero level of the maps a posteriori. We also summarize the noise characteristics of the HFI maps in the 2015 Planck data release and present some null tests to assess their quality. Finally, we discuss the major systematic effects and in particular the leakage induced by flux mismatch between the detectors that leads to spurious polarization signal
- âŠ