384 research outputs found

    A simplified inventory approach for estimating carbon in coarse woody debris in high-biomass forests

    Get PDF
    Forests carrying large quantities of live and dead wood are important carbon (C) stores. Here, we investigate how the inventory of coarse woody debris (CWD) and its embedded C (CWD-C) may be designed efficiently at the scale of logs, plots, and the landscape in Tasmanian tall Eucalyptus obliqua forests, which have very high levels of CWD (here 375–1085 m³ ha–1). From a set of 12 sites representing different times since disturbance, a thorough census of dead wood >10 cm in diameter was carried out at five sites using a fixed-plot (50 × 50 m) approach. This showed that 90% of the volume can be captured by recording only CWD logs >40 cm in diameter. Based on this approach and on the known density and C content of five different decay-classes, volume, mass, and CWD-C was determined for all 12 sites. To obtain an accurate estimate of CWD-C at the landscape scale, it was found to be sufficient to allocate entire individual logs to single decay-classes and to use one global value for C content instead of decay-class-specific values. The most decayed logs, which are difficult to measure, could be ignored. However, at the plot level, no relationships were found between CWD mass and either standing or downed CWD or standing-tree biomass, limiting the utility of these proxies for assessing CWD volume

    Structure and Function of a Mycobacterial NHEJ DNA Repair Polymerase

    Get PDF
    Non homologous end-joining (NHEJ)-mediated repair of DNA double-strand breaks in prokaryotes requires Ku and a specific multidomain DNA ligase (LigD). We present crystal structures of the primase/polymerisation domain (PolDom) of Mycobacterium tuberculosis LigD, alone and complexed with nucleotides. The PolDom structure combines the general fold of the archaeo-eukaryotic primase (AEP) superfamily with additional loops and domains that together form a deep cleft on the surface, likely used for DNA binding. Enzymatic analysis indicates that the PolDom of LigD, even in the absence of accessory domains and Ku proteins, has the potential to recognise DNA end-joining intermediates. Strikingly, one of the main signals for the specific and efficient binding of PolDom to DNA is the presence of a 5'-phosphate group, located at the single/double-stranded junction at both gapped and 3'-protruding DNA molecules. Although structurally unrelated, Pol lambda and Pol mu, the two eukaryotic DNA polymerases involved in NHEJ, are endowed with a similar capacity to bind a 5'-phosphate group. Other properties that are beneficial for NHEJ, such as the ability to generate template distortions and realignments of the primer, displayed by Pol lambda and Pol mu, are shared by the PolDom of bacterial LigD. In addition, PolDom can perform non-mutagenic translesion synthesis on termini containing modified bases. Significantly, ribonucleotide insertion appears to be a recurrent theme associated with NHEJ, maximised in this case by the deployment of a dedicated primase, although its in vivo relevance is unknown

    Charge conservation and time-varying speed of light

    Get PDF
    It has been recently claimed that cosmologies with time dependent speed of light might solve some of the problems of the standard cosmological scenario, as well as inflationary scenarios. In this letter we show that most of these models, when analyzed in a consistent way, lead to large violations of charge conservation. Thus, they are severly constrained by experiment, including those where cc is a power of the scale factor and those whose source term is the trace of the energy-momentum tensor. In addition, early Universe scenarios with a sudden change of cc related to baryogenesis are discarded.Comment: 4 page

    The fundamental constants and their variation: observational status and theoretical motivations

    Full text link
    This article describes the various experimental bounds on the variation of the fundamental constants of nature. After a discussion on the role of fundamental constants, of their definition and link with metrology, the various constraints on the variation of the fine structure constant, the gravitational, weak and strong interactions couplings and the electron to proton mass ratio are reviewed. This review aims (1) to provide the basics of each measurement, (2) to show as clearly as possible why it constrains a given constant and (3) to point out the underlying hypotheses. Such an investigation is of importance to compare the different results, particularly in view of understanding the recent claims of the detections of a variation of the fine structure constant and of the electron to proton mass ratio in quasar absorption spectra. The theoretical models leading to the prediction of such variation are also reviewed, including Kaluza-Klein theories, string theories and other alternative theories and cosmological implications of these results are discussed. The links with the tests of general relativity are emphasized.Comment: 56 pages, l7 figures, submitted to Rev. Mod. Phy

    End-processing during non-homologous end-joining: a role for exonuclease 1

    Get PDF
    Non-homologous end-joining (NHEJ) is a critical error-prone pathway of double strand break repair. We recently showed that tyrosyl DNA phosphodiesterase 1 (Tdp1) regulates the accuracy of NHEJ repair junction formation in yeast. We assessed the role of other enzymes in the accuracy of junction formation using a plasmid repair assay. We found that exonuclease 1 (Exo1) is important in assuring accurate junction formation during NHEJ. Like tdp1Δ mutants, exo1Δ yeast cells repairing plasmids with 5′-extensions can produce repair junctions with templated insertions. We also found that exo1Δ mutants have a reduced median size of deletions when joining DNA with blunt ends. Surprisingly, exo1Δ pol4Δ mutants repair blunt ends with a very low frequency of deletions. This result suggests that there are multiple pathways that process blunt ends prior to end-joining. We propose that Exo1 acts at a late stage in end-processing during NHEJ. Exo1 can reverse nucleotide additions occurring due to polymerization, and may also be important for processing ends to expose microhomologies needed for NHEJ. We propose that accurate joining is controlled at two steps, a first step that blocks modification of DNA ends, which requires Tdp1, and a second step that occurs after synapsis that requires Exo1

    Unique Signature of Dark Matter in Ancient Mica

    Get PDF
    Mica can store (for >1 Gy) etchable tracks caused by atoms recoiling from WIMPs. Because a background from fission neutrons will eventually limit this technique, a unique signature for WIMPs in ancient mica is needed. Our motion around the center of the Galaxy causes WIMPs, unlike neutrons, to enter the mica from a preferred direction on the sky. Mica is a directional detector and despite the complex rotations that natural mica crystals make with respect to this WIMP ``wind,'' there is a substantial dependence of etch pit density on present day mica orientation.Comment: 5 pages, LaTeX, 2 figures. Accepted for publication at Phys. Rev. Let
    corecore