911 research outputs found
Scalable Robust Kidney Exchange
In barter exchanges, participants directly trade their endowed goods in a
constrained economic setting without money. Transactions in barter exchanges
are often facilitated via a central clearinghouse that must match participants
even in the face of uncertainty---over participants, existence and quality of
potential trades, and so on. Leveraging robust combinatorial optimization
techniques, we address uncertainty in kidney exchange, a real-world barter
market where patients swap (in)compatible paired donors. We provide two
scalable robust methods to handle two distinct types of uncertainty in kidney
exchange---over the quality and the existence of a potential match. The latter
case directly addresses a weakness in all stochastic-optimization-based methods
to the kidney exchange clearing problem, which all necessarily require explicit
estimates of the probability of a transaction existing---a still-unsolved
problem in this nascent market. We also propose a novel, scalable kidney
exchange formulation that eliminates the need for an exponential-time
constraint generation process in competing formulations, maintains provable
optimality, and serves as a subsolver for our robust approach. For each type of
uncertainty we demonstrate the benefits of robustness on real data from a
large, fielded kidney exchange in the United States. We conclude by drawing
parallels between robustness and notions of fairness in the kidney exchange
setting.Comment: Presented at AAAI1
Recommended from our members
A male-produced aggregation-sex pheromone of the beetle Arhopalus rusticus (Coleoptera: Cerambycidae, Spondylinae) may be useful in managing this invasive species.
The longhorned beetle Arhopalus rusticus (Coleoptera: Cerambycidae, Spondylinae) is a common species in conifer forests of the Northern Hemisphere, but with global trade, it has invaded and become established in New Zealand, Australia, and South America. Arhopalus rusticus is a suspected vector of the phytopathogenic nematode, Bursaphelenchus xylophilus, the causative agent of pine wilt disease, which is a major threat to pine forests worldwide. Here, we report the identification of a volatile, male-produced aggregation-sex pheromone for this species. Headspace odours from males contained a major male-specific compound, identified as (2 S, 5E)-6,10-dimethyl-5,9-undecadien-2-ol (common name (S)-fuscumol), and a minor component (E)-6,10-dimethyl-5,9-undecadien-2-one (geranylacetone). Both compounds are known pheromone components for species in the same subfamily. In field trials in its native range in Slovenia, (S)-fuscumol was significantly more attractive to beetles of both sexes, than racemic fuscumol and a blend of host plant volatiles commonly used as an attractant for this species. Fuscumol-baited traps also caught significant numbers of another spondylidine species, Spondylis buprestoides (L.), and a rare click beetle, Stenagostus rufus (De Geer). The pheromone can be exploited as a cost-effective and environmentally safe tool for detection and monitoring of this invasive species at ports of entry, and for monitoring the beetle's distribution and population trends in both endemic and invasive populations
Metal-Insulator Transition Accompanied with a Charge Ordering in the One-dimensional t-J' Model
We study the metal-insulator transition accompanied with a charge ordering in
the one-dimensional (1D) t-J' model at quarter filling by the density matrix
renormalization group method. In this model the nearest-neighbor hopping energy
t competes with the next-nearest-neighbor exchange energy J'. We have found
that a metal-insulator transition occurs at a finite value of t/J'; (t/J')_C =
0.18 and the transition is of first order. In the insulating phase for small
t/J', there is an alternating charge ordering and the system behaves as a 1D
quantum Heisenberg antiferromagnet. The metallic side belongs to the
universality class of the Tomonaga-Luttinger liquids. The quantum phase
transition is an example of melting of the 1D quantum Heisenberg
antiferromagnet.Comment: 4 pages, 6 Postscript figures, REVTeX, submitted to Phys. Rev.
Electrical Resistivity and Thermal Expansion Measurements of URu2Si2 under Pressure
We carried out simultaneous measurements of electrical resistivity and
thermal expansion of the heavy-fermion compound URu2Si2 under pressure using a
single crystal. We observed a phase transition anomaly between hidden (HO) and
antiferromagnetic (AFM) ordered states at TM in the temperature dependence of
both measurements. For the electrical resistivity, the anomaly at TM was very
small compared with the distinct hump anomaly at the phase transition
temperature T0 between the paramagnetic state (PM) and HO, and exhibited only a
slight increase and decrease for the I // a-axis and c-axis, respectively. We
estimated each excitation gap of HO, Delta_HO, and AFM, Delta_AFM, from the
temperature dependence of electrical resistivity; Delta_HO and Delta_AFM have
different pressure dependences from each other. On the other hand, the
temperature dependence of thermal expansion exhibited a small anomaly at T0 and
a large anomaly at TM. The pressure dependence of the phase boundaries of T0
and TM indicates that there is no critical end point and the two phase
boundaries meet at the critical point.Comment: 4 pages, 4 figure
Relationship between Diffusion, Selfdiffusion and Viscosity
We investigate the experimental limits of validity of the Stokes-Einstein
equation. There is an important difference between diffusion and
self-diffusion. There are experimental evidences, that in the case of
self-diffusion the product D /T is constant and the equation is still valid.
However, comparison of existing experimental data on viscosity and diffusion
coefficients D of small, fast moving ions unambiguously show that the product D
/T depends strongly on temperature T. The temperature dependence of diffusion
coefficient declines from that of viscosity. Therefore, the Stokes-Einstein
equation is not valid in this case
Power Up: True Stories of Women Who Changed the World Display
If you’ve ever used a computer (Grace Hopper), played a game of Monopoly (Elizabeth Magie), or enjoyed a hand-churned scoop of ice cream (Nancy Johnson), you know that women hold a crucial place in conversations on invention and ingenuity.
Amidst a multitude of contemporary intersectional movements for women’s equality and recognition, the Cooper Library January Display aims to pay homage to the many contributions by women to U.S. and world history.
Throughout January, grab a book or movie and dive deep into the rich history of the women who worked as catalysts and game-changers for some of the world’s greatest advancements
- …
