3,874 research outputs found

    Space-age Europe, 1957-1980

    Get PDF
    European space related research and development from the launch of Sputnik in 1957 to 1980 in discussed. The political response to Sputnik is analyzed in the context of cold war. The development of the European Space Agency is traced

    MHD mode conversion in a stratified atmosphere

    Full text link
    Mode conversion in the region where the sound and Alfven speeds are equal is a complex process, which has been studied both analytically and numerically, and has been seen in observations. In order to further the understanding of this process we set up a simple, one-dimensional model, and examine wave propagation through this system using a combination of analytical and numerical techniques. Simulations are carried out in a gravitationally stratified atmosphere with a uniform, vertical magnetic field for both isothermal and non-isothermal cases. For the non-isothermal case a temperature profile is chosen to mimic the steep temperature gradient encountered at the transition region. In all simulations, a slow wave is driven on the upper boundary, thus propagating down from low-beta to high-beta plasma across the mode-conversion region. In addition, a detailed analytical study is carried out where we predict the amplitude and phase of the transmitted and converted components of the incident wave as it passes through the mode-conversion region. A comparison of these analytical predictions with the numerical results shows good agreement, giving us confidence in both techniques. This knowledge may be used to help determine wave types observed and give insight into which modes may be involved in coronal heating.Comment: 7 pages, 5 figure

    MHD Mode Conversion around a 2D Magnetic Null Point

    Get PDF
    Mode conversion occurs when a wave passes through a region where the sound and Alfven speeds are equal. At this point there is a resonance, which allows some of the incident wave to be converted into a different mode. We study this phenomenon in the vicinity of a two-dimensional, coronal null point. As a wave approaches the null it passes from low- to high-beta plasma, allowing conversion to take place. We simulate this numerically by sending in a slow magnetoacoustic wave from the upper boundary; as this passes through the conversion layer a fast wave can clearly be seen propagating ahead. Numerical simulations combined with an analytical WKB investigation allow us to determine and track both the incident and converted waves throughout the domain.Comment: 4 pages, 2 figure

    Alien Registration- Mcdougall, Roderick W. (Fort Fairfield, Aroostook County)

    Get PDF
    https://digitalmaine.com/alien_docs/36336/thumbnail.jp

    Alien Registration- Mcdougall, Roderick W. (Fort Fairfield, Aroostook County)

    Get PDF
    https://digitalmaine.com/alien_docs/36336/thumbnail.jp

    Passively mode-locked semiconductor laser for coherent population trapping in <sup>87</sup>Rb

    Get PDF
    Passively mode-locked semiconductor laser for coherent population trapping in &lt;sup&gt;87&lt;/sup&gt;Rb is reported. The laser material used is a 793nm GaAs/Al&lt;sub&gt;x&lt;/sub&gt;Ga&lt;sub&gt;1-x&lt;/sub&gt;As single quantum well (QW) graded index separate confinement heterostructure

    Suppression of pyr-3 mutants of Neurospora

    Get PDF
    Suppression of pyr-3 mutants of Neurospor

    Suppression of pyr-3 mutants by arg-12 mutants

    Get PDF
    Suppression of pyr-3 mutants by arg-12 mutant

    Ultrafast harmonic mode-locking of monolithic compound-cavity laser diodes incorporating photonic-bandgap reflectors

    Get PDF
    We present the first demonstration of reproducible harmonic mode-locked operation from a novel design of monolithic semiconductor laser comprising a compound cavity formed by a 1-D photonic-bandgap (PBG) mirror. Mode-locking (ML) is achieved at a harmonic of the fundamental round-trip frequency with pulse repetition rates from 131 GHz up to a record high frequency of 2.1 THz. The devices are fabricated from GaAs-Al-GaAs material emitting at a wavelength of 860 nm and incorporate two gain sections with an etched PBG reflector between them, and a saturable absorber section. Autocorrelation studies are reported which allow the device behavior for different ML frequencies, compound cavity ratios, and type and number of intra-cavity reflectors to be analyzed. The highly reflective PBG microstructures are shown to be essential for subharmonic-free ML operation of the high-frequency devices. We have also demonstrated that the single PBG reflector can be replaced by two separate features with lower optical loss. These lasers may find applications in terahertz; imaging, medicine, ultrafast optical links, and atmospheric sensing

    Lifetimes of Shockley electrons and holes at the Cu(111) surface

    Get PDF
    A theoretical many-body analysis is presented of the electron-electron inelastic lifetimes of Shockley electrons and holes at the (111) surface of Cu. For a description of the decay of Shockley states both below and above the Fermi level, single-particle wave functions have been obtained by solving the Schr\"odinger equation with the use of an approximate one-dimensional pseudopotential fitted to reproduce the correct bulk energy bands and surface-state dispersion. A comparison with previous calculations and experiment indicates that inelastic lifetimes are very sensitive to the actual shape of the surface-state single-particle orbitals beyond the Γˉ\bar\Gamma (k∥=0{\bf k}_\parallel=0) point, which controls the coupling between the Shockley electrons and holes.Comment: 4 pages, 3 figures, to appear in Phys. Rev.
    • …
    corecore