3,060 research outputs found

    Gaseous toroid around Saturn

    Get PDF
    The trapping of Titan's escaping atmosphere in the Saturnian system by a toroidal ring is discussed. The radius of the toroid is comparable to Titan's orbit, or about ten times larger than the visible rings. Theoretical atmospheric models are formulated that consider Saturn's gravitational attraction and magnetospheric properties in forming this toroid and in protecting toroid particles from direct ionization by solar wind particles

    The Immanent Contingency of Physical Laws in Leibniz’s Dynamics

    Get PDF
    This paper focuses on Leibniz’s conception of modality and its application to the issue of natural laws. The core of Leibniz’s investigation of the modality of natural laws lays in the distinction between necessary, geometrical laws on the one hand, and contingent, physical laws of nature on the other. For Leibniz, the contingency of physical laws entailed the assumption of the existence of an additional form of causality beyond mechanical or efficient ones. While geometrical truths, being necessary, do not require the use of the principle of sufficient reason, physical laws are not strictly determined by geometry and therefore are logically distinct from geometrical laws. As a consequence, the set of laws that regulate the physical laws could have been created otherwise by God. However, in addition to this, the contingency of natural laws does not consist only in the fact that God has chosen them over other possible ones. On the contrary, Leibniz understood the status of natural laws as arising from the action internal to physical substances. Hence the actuality of physical laws results from a causal power that is inherent to substances rather than being the mere consequence of the way God arranged the relations between physical objects. Focusing on three instances of Leibniz’s treatment of contingency in physics, this paper argues that, in order to account for the contingency of physical laws, Leibniz maintained that final causes, in addition to efficient and mechanical ones, must operate in physical processes and operations

    Radiogenic power and geoneutrino luminosity of the Earth and other terrestrial bodies through time

    Full text link
    We report the Earth's rate of radiogenic heat production and (anti)neutrino luminosity from geologically relevant short-lived radionuclides (SLR) and long-lived radionuclides (LLR) using decay constants from the geological community, updated nuclear physics parameters, and calculations of the β\beta spectra. We track the time evolution of the radiogenic power and luminosity of the Earth over the last 4.57 billion years, assuming an absolute abundance for the refractory elements in the silicate Earth and key volatile/refractory element ratios (e.g., Fe/Al, K/U, and Rb/Sr) to set the abundance levels for the moderately volatile elements. The relevant decays for the present-day heat production in the Earth (19.9±3.019.9\pm3.0 TW) are from 40^{40}K, 87^{87}Rb, 147^{147}Sm, 232^{232}Th, 235^{235}U, and 238^{238}U. Given element concentrations in kg-element/kg-rock and density ρ\rho in kg/m3^3, a simplified equation to calculate the present day heat production in a rock is: h[μW m3]=ρ(3.387×103K+0.01139Rb+0.04595Sm+26.18Th+98.29U) h \, [\mu \text{W m}^{-3}] = \rho \left( 3.387 \times 10^{-3}\,\text{K} + 0.01139 \,\text{Rb} + 0.04595\,\text{Sm} + 26.18\,\text{Th} + 98.29\,\text{U} \right) The radiogenic heating rate of Earth-like material at Solar System formation was some 103^3 to 104^4 times greater than present-day values, largely due to decay of 26^{26}Al in the silicate fraction, which was the dominant radiogenic heat source for the first 10\sim10 Ma. Assuming instantaneous Earth formation, the upper bound on radiogenic energy supplied by the most powerful short-lived radionuclide 26^{26}Al (t1/2t_{1/2} = 0.7 Ma) is 5.5  ×  \;\times\;1031^{31} J, which is comparable (within a factor of a few) to the planet's gravitational binding energy.Comment: 28 pages, 6 figures, 5 table

    Reduction in Incident Solar Energy by Desert Shrub Cover

    Get PDF
    Author Institution: University of Cincinnati, Cincinnati 19, Ohi

    Geo-neutrinos and Earth Models

    Get PDF
    We present the current status of geo-neutrino measurements and their implications for radiogenic heating in the mantle. Earth models predict different levels of radiogenic heating and, therefore, different geo-neutrino fluxes from the mantle. Seismic tomography reveals features in the deep mantle possibly correlated with radiogenic heating and causing spatial variations in the mantle geo-neutrino flux at the Earth surface. An ocean-based observatory offers the greatest sensitivity to the mantle flux and potential for resolving Earth models and mantle features. Refinements to estimates of the geo-neutrino flux from continental crust reduce uncertainty in measurements of the mantle flux, especially measurements from land-based observatories. These refinements enable the resolution of Earth models using the combined measurements from multiple continental observatories.Comment: 9 pages, 4 figures; Contributed paper TAUP 201

    Kalman Filters for Time Delay of Arrival-based Source Localization

    Get PDF
    In this work, we propose an algorithm for acoustic source localization based on time delay of arrival (TDOA) estimation. In earlier work by other authors, an initial closed-form approximation was first used to estimate the true position of the speaker followed by a Kalman filtering stage to smooth the time series of estimates. In the proposed algorithm, this closed-form approximation is eliminated by employing a Kalman filter to directly update the speaker\u27s position estimate based on the observed TDOAs. In particular, the TDOAs comprise the observation associated with an extended Kalman filter whose state corresponds to the speaker\u27s position. We tested our algorithm on a data set consisting of seminars held by actual speakers. Our experiments revealed that the proposed algorithm provides source localization accuracy superior to the standard spherical and linear intersection techniques. Moreover, the proposed algorithm, although relying on an iterative optimization scheme, proved efficient enough for real-time operation
    corecore