855 research outputs found

    Aging impacts isolated lymphoid follicle development and function

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Immunosenescence is the age-related decline and dysfunction of protective immunity leading to a marked increase in the risk of infections, autoimmune disease, and cancer. The majority of studies have focused on immunosenescence in the systemic immune system; information concerning the effect of aging on intestinal immunity is limited. Isolated lymphoid follicles (ILFs) are newly appreciated dynamic intestinal lymphoid structures that arise from nascent lymphoid tissues, or cryptopatches (CP), in response to local inflammatory stimuli. ILFs promote "homeostatic" responses including the production of antigen-specific IgA, thus playing a key role in mucosal immune protection. ILF dysfunction with aging could contribute to immunosenescence of the mucosal system, and accordingly we examined phenotypic and functional aspects of ILFs from young (2 month old) and aged (2 year old) mice.</p> <p>Results</p> <p>We observed that aged mice have increased numbers of ILFs and increased numbers of structures corresponding to an early stage of CPs transforming into ILFs. The cellular composition of ILFs in aged mice is altered with a smaller B-lymphocyte population and an increased T-lymphocyte population. The ILF T-lymphocyte population is notable by the presence of CD4+ CD8αα+ T-lymphocytes, which are absent from the systemic compartment. The smaller B-lymphocyte population in ILFs from aged mice is directly correlated with decreased mRNA and protein expression of CCL20 and CXCL13, two chemokines that play crucial roles in recruiting B-lymphocytes into ILFs. Aged mice had elevated levels of serum and fecal immunoglobulins and despite the decreased B-lymphocyte population, ILFs from aged mice displayed increased IgA production. The immunoglobulin repertoire was skewed in aged mice, and ILFs demonstrated a repertoire usage similar to that of the systemic pool in both young and aged mice.</p> <p>Conclusions</p> <p>Here we observed that ILF development, cellular composition, and immunoglobulin production are altered with aging suggesting that ILF dysfunction contributes to mucosal immunosenescence.</p

    Multiplex ligation-dependent probe amplification (MLPA) analysis is an effective tool for the detection of novel intragenic PLA2G6 mutations: Implications for molecular diagnosis

    Get PDF
    Phospholipase associated neurodegeneration (PLAN) comprises a heterogeneous group of autosomal recessive neurological disorders caused by mutations in the PLA2G6 gene. Direct gene sequencing detects 85% mutations in infantile neuroaxonal dystrophy. We report the novel use of multiplex ligation-dependent probe amplification (MLPA) analysis to detect novel PLA2G6 duplications and deletions. The identification of such copy number variants (CNVs) expands the PLAN mutation spectrum and may account for up to 12.5% of PLA2G6 mutations. MLPA should thus be employed to detect CNVs of PLA2G6 in patients who show clinical features of PLAN but in whom both disease-causing mutations cannot be identified on routine sequencin

    Functional neuroanatomical correlates of episodic memory impairment in early phase psychosis

    Get PDF
    Studies have demonstrated that episodic memory (EM) is often preferentially disrupted in schizophrenia. The neural substrates that mediate EM impairment in this illness are not fully understood. Several functional magnetic resonance imaging (fMRI) studies have employed EM probe tasks to elucidate the neural underpinnings of impairment, though results have been inconsistent. The majority of EM imaging studies have been conducted in chronic forms of schizophrenia with relatively few studies in early phase patients. Early phase schizophrenia studies are important because they may provide information regarding when EM deficits occur and address potential confounds more frequently observed in chronic populations. In this study, we assessed brain activation during the performance of visual scene encoding and recognition fMRI tasks in patients with earlyphase psychosis (n = 35) and age, sex, and race matched healthy control subjects (n = 20). Patients demonstrated significantly lower activation than controls in the right hippocampus and left fusiform gyrus during scene encoding and lower activation in the posterior cingulate, precuneus, and left middle temporal cortex during recognition of target scenes. Symptom levels were not related to the imaging findings, though better cognitive performance in patients was associated with greater right hippocampal activation during encoding. These results provide evidence of altered function in neuroanatomical circuitry subserving EM early in the course of psychotic illness, which may have implications for pathophysiological models of this illness

    A Search for Oxygen in the Low-Density Lyman-alpha Forest Using the Sloan Digital Sky Survey

    Get PDF
    We use 2167 Sloan Digital Sky Survey (SDSS) quasar spectra to search for low-density oxygen in the Intergalactic Medium (IGM). Oxygen absorption is detected on a pixel-by-pixel basis by its correlation with Lyman-alpha forest absorption. We have developed a novel Locally Calibrated Pixel (LCP) search method that uses adjacent regions of the spectrum to calibrate interlopers and spectral artifacts, which would otherwise limit the measurement of OVI absorption. Despite the challenges presented by searching for weak OVI within the Lyman-alpha forest in spectra of moderate resolution and signal-to-noise, we find a highly significant detection of absorption by oxygen at 2.7 < z < 3.2 (the null hypothesis has a chi^2=80 for 9 data points). We interpret our results using synthetic spectra generated from a lognormal density field assuming a mixed quasar-galaxy photoionizing background (Haardt & Madau 2001) and that it dominates the ionization fraction of detected OVI. The LCP search data can be fit by a constant metallicity model with [O/H] = -2.15_(-0.09)^(+0.07), but also by models in which low-density regions are unenriched and higher density regions have a higher metallicity. The density-dependent enrichment model by Aguirre et al. (2008) is also an acceptable fit. All our successful models have similar mass-weighted oxygen abundance, corresponding to [_MW] = -2.45+-0.06. This result can be used to find the cosmic oxygen density in the Lyman-alpha forest, Omega_(Oxy, IGM) = 1.4(+-0.2)x10^(-6) = 3x10^(-4) Omega_b. This is the tightest constraint on the mass-weighted mean oxygen abundance and the cosmic oxygen density in the Lyman-alpha forest to date and indicates that it contains approximately 16% of metals produced by star formation (Bouch\'e et al. 2008) up to z = 3.Comment: 12 pages, 9 figures. Accepted by ApJ (minor changes

    Vacuum Stability, Perturbativity, and Scalar Singlet Dark Matter

    Get PDF
    We analyze the one-loop vacuum stability and perturbativity bounds on a singlet extension of the Standard Model (SM) scalar sector containing a scalar dark matter candidate. We show that the presence of the singlet-doublet quartic interaction relaxes the vacuum stability lower bound on the SM Higgs mass as a function of the cutoff and lowers the corresponding upper bound based on perturbativity considerations. We also find that vacuum stability requirements may place a lower bound on the singlet dark matter mass for given singlet quartic self coupling, leading to restrictions on the parameter space consistent with the observed relic density. We argue that discovery of a light singlet scalar dark matter particle could provide indirect information on the singlet quartic self-coupling.Comment: 25 pages, 10 figures; v2 - fixed minor typos; v3 - added to text discussions of other references, changed coloring of figures for easier black and white viewin

    Cell-specific discrimination of desmosterol and desmosterol mimetics confers selective regulation of LXR and SREBP in macrophages.

    Get PDF
    Activation of liver X receptors (LXRs) with synthetic agonists promotes reverse cholesterol transport and protects against atherosclerosis in mouse models. Most synthetic LXR agonists also cause marked hypertriglyceridemia by inducing the expression of sterol regulatory element-binding protein (SREBP)1c and downstream genes that drive fatty acid biosynthesis. Recent studies demonstrated that desmosterol, an intermediate in the cholesterol biosynthetic pathway that suppresses SREBP processing by binding to SCAP, also binds and activates LXRs and is the most abundant LXR ligand in macrophage foam cells. Here we explore the potential of increasing endogenous desmosterol production or mimicking its activity as a means of inducing LXR activity while simultaneously suppressing SREBP1c-induced hypertriglyceridemia. Unexpectedly, while desmosterol strongly activated LXR target genes and suppressed SREBP pathways in mouse and human macrophages, it had almost no activity in mouse or human hepatocytes in vitro. We further demonstrate that sterol-based selective modulators of LXRs have biochemical and transcriptional properties predicted of desmosterol mimetics and selectively regulate LXR function in macrophages in vitro and in vivo. These studies thereby reveal cell-specific discrimination of endogenous and synthetic regulators of LXRs and SREBPs, providing a molecular basis for dissociation of LXR functions in macrophages from those in the liver that lead to hypertriglyceridemia

    High intensity aerobic exercise training improves deficits of cardiovascular autonomic function in a rat model of type 1 diabetes mellitus with moderate hyperglycemia

    Get PDF
    © 2016 Kenneth N. Grisé et al. Indices of cardiovascular autonomic neuropathy (CAN) in experimental models of Type 1 diabetes mellitus (T1DM) are often contrary to clinical data. Here, we investigated whether a relatable insulin-treated model of T1DM would induce deficits in cardiovascular (CV) autonomic function more reflective of clinical results and if exercise training could prevent those deficits. Sixty-four rats were divided into four groups: sedentary control (C), sedentary T1DM (D), control exercise (CX), or T1DM exercise (DX). Diabetes was induced via multiple low-dose injections of streptozotocin and blood glucose was maintained at moderate hyperglycemia (9-17 mM) through insulin supplementation. Exercise training consisted of daily treadmill running for 10 weeks. Compared to C, D had blunted baroreflex sensitivity, increased vascular sympathetic tone, increased serum neuropeptide Y (NPY), and decreased intrinsic heart rate. In contrast, DX differed from D in all measures of CAN (except NPY), including heart rate variability. These findings demonstrate that this T1DM model elicits deficits and exercise-mediated improvements to CV autonomic function which are reflective of clinical T1DM

    Can the Future of ID Escape the Inertial Dogma of Its Past? The Exemplars of Shorter Is Better and Oral Is the New IV.

    Get PDF
    Like all fields of medicine, Infectious Diseases is rife with dogma that underpins much clinical practice. In this study, we discuss 2 specific examples of historical practice that have been overturned recently by numerous prospective studies: traditional durations of antimicrobial therapy and the necessity of intravenous (IV)-only therapy for specific infectious syndromes. These dogmas are based on uncontrolled case series from >50 years ago, amplified by the opinions of eminent experts. In contrast, more than 120 modern, randomized controlled trials have established that shorter durations of therapy are equally effective for many infections. Furthermore, 21 concordant randomized controlled trials have demonstrated that oral antibiotic therapy is at least as effective as IV-only therapy for osteomyelitis, bacteremia, and endocarditis. Nevertheless, practitioners in many clinical settings remain refractory to adopting these changes. It is time for Infectious Diseases to move beyond its history of eminent opinion-based medicine and truly into the era of evidenced-based medicine
    corecore