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Research Article
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Indices of cardiovascular autonomic neuropathy (CAN) in experimental models of Type 1 diabetes mellitus (T1DM) are often
contrary to clinical data. Here, we investigated whether a relatable insulin-treated model of T1DM would induce deficits in
cardiovascular (CV) autonomic function more reflective of clinical results and if exercise training could prevent those deficits.
Sixty-four rats were divided into four groups: sedentary control (C), sedentary T1DM (D), control exercise (CX), or T1DM exercise
(DX). Diabetes was induced via multiple low-dose injections of streptozotocin and blood glucose was maintained at moderate
hyperglycemia (9–17mM) through insulin supplementation. Exercise training consisted of daily treadmill running for 10 weeks.
Compared to C, D had blunted baroreflex sensitivity, increased vascular sympathetic tone, increased serum neuropeptide Y (NPY),
and decreased intrinsic heart rate. In contrast, DX differed from D in all measures of CAN (except NPY), including heart rate
variability.These findings demonstrate that this T1DMmodel elicits deficits and exercise-mediated improvements to CV autonomic
function which are reflective of clinical T1DM.

1. Introduction

A common and serious complication of Type 1 diabetes
mellitus (T1DM) is diabetic autonomic neuropathy [1, 2].
Cardiovascular autonomic neuropathy (CAN) is a subset of
diabetic autonomic neuropathy characterized by impaired
autonomic control of the cardiovascular (CV) system [3].
CAN is also consistently associated with increased mortality.
For instance, CAN has been reported to increase the mor-
tality of diabetic patients by a factor of 3.45 [4]. Clinically,
the most common methods for assessing CAN are heart

rate variability (HRV) analysis and baroreflex sensitivity
(BRS) [3, 5, 6]. In T1DM, aspects of the baroreflex arc can
be impaired [7], such that both baroreceptor activity and
excitability are blunted [8, 9] and the aortic depressor nerves
undergo axonal atrophy [8]. Aswell, autonomic efferents, pri-
marily of the parasympathetic nervous system (PSNS), have
decreased activity, reduced responsiveness, and decreased
neurochemical activity in the heart [10, 11]. Impairment of
central nervous system regions has also been reported as the
limiting factor of BRS [12, 13]. Reduced heart rate variability
(HRV) is often the earliest symptom of CAN [14]. Whether
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measured by time domain analysis or by frequency domain
analysis and whether in clinical or experimental T1DM, HRV
is consistently reported to be reduced in T1DM [5, 14–17].

Exercise has been demonstrated to be an effective means
of improving deficits in HRV and BRS in both clinical
and experimental T1DM [18–21]. Such improvements have
been attributed to improved insulin sensitivity, increased
endogenous antioxidant and anti-inflammatory mediators,
and improved autonomic control of the CV system [22–24].
Despite similar reductions inHRVandBRS, there aremarked
differences in early-stage changes to other CV parameters
between clinical and experimental T1DM [25]. Specifically,
in clinical T1DM, increases in heart rate (HR) and blood
pressure (BP) are commonly reported in early autonomic
neuropathy [1, 3, 14, 24, 26–28]. In contrast, experimental
STZ-induced T1DM is regularly associated with decreased
BP and HR, beginning shortly after diabetes induction [15,
16, 29–31]. Due to these opposing initial changes in BP
and HR, exercise training is often observed to produce
contrasting outcomes on CV parameters in experimental and
clinical T1DM, namely, increased BP andHR in experimental
T1DM and decreased BP and HR in clinical T1DM [19,
25, 32–34]. As a result, both the increase and decrease of
these CV factors are concurrently cited as exercise-mediated
improvements to CAN with little consideration of the fact
that the changes are opposed between these two contexts of
T1DM[25].This is important because if animalmodels do not
accurately reproduce T1DM pathology, then the outcomes of
experimental studies may not translate to the treatment of
human CAN, as the mechanisms underlying the pathology
and exercise modifications may differ.

Another important difference between experimental and
clinical T1DM is the common omission of insulin treatment
in experimental diabetes leading to severe hyperglycemia
ranging from roughly 17 to 25mM blood glucose concen-
trations ([BG]) [15, 16, 29, 30]. As the severity and duration
of hyperglycemia have been shown to influence the degree
of diabetic neuropathy, acute and steep elevations of [BG]
in STZ-induced T1DM may not only cause early onset
neuropathy to the PSNS but also cause acute neuropathy of
the sympathetic nervous system (SNS) and directly affect
the sinoatrial (SA) node. These changes may mediate the
observed reduction in BP and HR that arise acutely in
experimental T1DM and in late-stage clinical T1DM [2, 35–
38]. Indeed, intensive insulin therapy has been shown to
restore BP and HR to non-T1DM levels in STZ-induced
T1DM rats [25, 39].

Yet, despite the use of insulin therapy in clinical T1DM,
it is often the case that chronic, moderate hyperglycemia is
maintained as a result of difficulties in regulating [BG] in
response to dynamic influences on glycemic control, such
as food intake and exercise [40, 41]. This is often resultant
of a tendency to err on the side of moderate hyperglycemia
in order to circumvent the acute discomfort and danger
associated with hypoglycemic episodes, which occur more
frequently with diabetic neuropathy due to the impairment
of the glucagon response [40, 42, 43]. To address this, our
laboratory established a model of T1DM using a multiple
low-dose STZ-treatment and insulin therapy to replicate

the moderate hyperglycemia observed in clinical T1DM [44].
In our previous studies that employed this model, we obser-
ved impairments in glucose tolerance, vascular responsive-
ness, cardiac function, and bone health, whichwere improved
with high intensity aerobic exercise training [44–47].

The purpose of the current study was to investigate
whether ourmodel of multiple low-dose STZ-induced T1DM
with insulin therapy would induce deficits in cardiovascular
autonomic function more representative of clinical T1DM,
and if high intensity aerobic training could prevent those
deficits. We hypothesised that (1) our model of STZ-induced
T1DM would elicit indices of CAN, including a blunted
BRS (bradycardia and tachycardia response), lowered HRV
and intrinsic heart rate, increased vascular sympathetic tone,
and increased mean arterial pressure, and (2) high intensity
aerobic exercise training would prevent or ameliorate the
indications of CAN.

2. Materials and Methods

2.1. Ethics Approval. The protocols used in this investigation
were approved by the University of Western Ontario Council
on Animal Care and conformed to the guidelines of the
Canadian Council on Animal Care.

2.2. Animals. Eight-week-old male Sprague-Dawley rats
were obtained from Charles River Laboratories Canada
(Saint-Constant, Quebec). The rats were housed in pairs
and maintained on a 12-hour dark/light cycle at a constant
temperature (20±1∘C) and relative humidity (50%). Rats were
allowed access to standard rat chow and water ad libitum.

2.3. Experimental Groups. Sixty-four rats were randomly
assigned to one of four groups as follows: (1) sedentary control
(C, 𝑛 = 16); (2) exercised control (CX, 𝑛 = 16); (3) sedentary
T1DM (D, 𝑛 = 16); (4) exercised T1DM (DX, 𝑛 = 16). All
functional and blood endpoint measures were acquired 24
hours after the final exercise bout.

2.4. T1DM Induction and Insulin Dose. Upon arrival rats
were acclimatized to the laboratory setting for five days.
Subsequently, T1DM was induced over five consecutive
days by multiple intraperitoneal (IP) injections of 20mg/kg
streptozotocin (STZ, Sigma-Aldrich) dissolved in a citrate
buffer (0.1M, pH 4.5). Diabetes was confirmed by blood
glucose measurements greater than or equal to 18mM on
two consecutive days. If necessary, subsequent 20mg/kg
STZ injections were administered until diabetes was con-
firmed. Following the confirmation of diabetes, insulin pellets
(1 pellet; 2 U insulin/day; Linplant, Linshin Canada, Inc.,
Toronto, Ontario, Canada) were implanted subcutaneously
in the abdominal region. Insulin pellet doses were then
monitored for 1 week and adjusted (±0.5 pellets) in order
to obtain daily nonfasting blood glucose concentrations in
the moderate hyperglycemic range of 9–17mM. Insulin dose
was determined by multiplying the total quantity of pellet
implanted (0.5 pellet increments) by the amount of insulin
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released per pellet (2 units of insulin/day/pellet) divided by
the body weight (Kg) of the rat.

2.5. Body Weight and Blood Glucose Concentration. Body
weights and nonfasting blood glucose concentrations were
obtained weekly. Blood was obtained from the saphenous
vein by venous puncture with a 30-gauge needle and mea-
sured via Freestyle Lite Blood Glucose Monitoring System
(Abbott Diabetes Care Inc., Mississauga, Ontario, Canada).

2.6. Intravenous Glucose Tolerance Test. Intravenous glucose
tolerance tests (IVGTT) were performed on all animals
prior to T1DM induction (pre-T1DM) and at the end of
week 10 of the exercise training period. Rats were fasted for
approximately 8 to 12 hours prior to the assay and did not
perform exercise on the day of their IVGTT. A sterile-filtered
dextrose solution (50% dextrose, 50% ddH

2
O) was injected

(1 g/kg) into the lateral tail vein of the conscious rat. Following
dextrose infusion, blood glucose was measured at 5 minutes,
at 10 minutes, and then at 10-minute intervals thereafter until
blood glucose levels plateaued.

2.7. Exercise Protocol. Prior to the initiation of the exercise
training program, rats were familiarized with the exercise
equipment on two consecutive days. The familiarization
consisted of two 15-minute sessions of running at progressive
treadmill speeds up to 30 meters per minute (m/min). The
treadmill was a custom-built apparatus fabricated by the
physical plant at University of Western Ontario and has been
used in many previous studies [44–47]. The exercise training
program consisted of 1 hour of motor-driven treadmill
running per day at 27m/min with a 6-degree incline, 5 days
per week, for 10 weeks.The exercise intensity was determined
based on earlier research that investigated oxygen uptake in
rats at various treadmill speeds. The chosen intensity was
found to represent approximately 75–85% VO

2max [48, 49].

2.8. Preparative Surgery and Instrumentation. To achieve a
surgical plane of anesthesia, rats were placed in an induc-
tion chamber circulating 4% isoflurane (96% O

2
). Once

motor reflexes were undetectable, rats were transferred to a
nosecone delivering 3% isoflurane (97% O

2
) and placed on

a hot water pad (37∘C). Rats were cannulated with saline-
infused polyethylene (PE90) catheters in the right jugular
vein and carotid artery and each catheter was attached to a
three-way stopcock. The jugular vein catheter was used for
drug infusions and the carotid artery catheter was connected
in series with a pressure transducer (PX272, Edwards Life
Sciences, Irvine, California, USA) for arterial blood pressure
measurements.

At the end of the preparative surgery, rats were injected
IP with a 25mg/Kg “cocktail” of urethane (16mg/mL) and
𝛼-chloralose (100mg/mL), an anesthetic cocktail that has
been shown to have the least inhibition of baseline CV
control and autonomic function [50]. A total of 10mL of
urethane/𝛼-chloralose was made, 5mL of which was diluted
to 50% with ddH

2
O and was used as needed to maintain

anesthesia throughout data collection. Isoflurane anesthesia

was gradually removed, whereby urethane/𝛼-chloralose was
the primary anesthesia used during data collection.

2.9. Basal Heart Rate, Systolic Blood Pressure, and Mean
Arterial Pressure. Heart rate (HR), systolic blood pressure
(SBP), and mean arterial pressure (MAP) were determined
from the blood pressure pulse waveform and were collected
while the ratswere under urethane/𝛼-chloralose anesthesia in
the supine position. The pressure transducer was calibrated
using a standard analog manometer. Data were obtained
using a PowerLab data acquisition system, digitized, and
recorded at 1000Hz using the bundled LabChart 7 Pro
software (ADInstruments, Colorado Springs, CO, USA).

2.10. Heart Rate Variability. Prior to drug infusions, 5 min-
utes of spontaneous electrocardiogram data was sampled at
1000Hz and analyzed with LabChart HRV analysis software
(ADInstruments). Time domain analysis of the standard
deviation between normal peak pulses of the pressure pulse
waveform (SDNN) was quantified as a measure of the total
variability of the HR. Frequency domain analysis of the high
frequency (HF) band of the Fast Fourier Transform (FFT)
of the data was assessed as an index of parasympathetically
mediated HRV.

2.11. Baroreflex Sensitivity. Baroreflex sensitivity (BRS) was
assessed using the modified Oxford technique [51, 52]. The
BRS was quantified using the slope of the linear regres-
sion line representing the linear portion of the sigmoidal
heart rate-systolic blood pressure relationship (ΔHR {BPM}/
ΔSBP {mmHg}−1) after rapid bolus injections (∼5 s) of
phenylephrine (PE, 12 𝜇g/Kg, 10 𝜇g/mL) and sodium nitro-
prusside (SNP, 60 𝜇g/Kg, 110 𝜇g/mL) dissolved in ddH

2
O.The

rationale for this method is detailed by Studinger et al. (2007)
[54]. For each drug, the catheter was first filled with a 0.2mL
volume to ensure accuracy of the drug dose. After a stable
baseline was obtained, a bolus injection of SNP was rapidly
infused and the reflex SNS mediated tachycardia response
wasmeasured.The analysis began at the onset of SBPdecrease
after SNP infusion and ended when SBP reached its nadir.
This was followed by a saline flush to washout any remaining
SNP in the catheter. After a stable baseline was reestablished,
this same procedure was then followed using PE to measure
PSNSmediated reflex bradycardia, except that analysis began
at the onset of SBP increase and ended when SBP reached its
zenith. Responses to PE and SNP were plotted separately and
only regression lines (slopes) with correlation coefficients (𝑟)
≥ 0.70 and 𝑝 < 0.05 were accepted [53, 54].

2.12. Vascular Sympathetic Tone. To measure the sympa-
thetic contribution to baseline vascular resistance, MAP was
assessed before and after a bolus injection of the 𝛼-adrenergic
receptor blocker, prazosin (85 𝜇g/Kg, 500 𝜇g/mL). Following
this protocol, animals were euthanized via exsanguination
while still under urethane/𝛼-chloralose anesthesia.

2.13. Neuropeptide Y ELISA. To ensure physiological testing
did not confound serum neuropeptide Y concentration
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[NPY] measurement, a subset of animals from each group
did not undergo surgery for heart rate variability, baroreflex
sensitivity, mean arterial pressure, or vascular sympathetic
tone measurements. Rather, at the end of the 10-week
exercise training period these animals were anesthetized via
intraperitoneal injection of sodium pentobarbital (65mg/kg)
and blood serum samples for [NPY] measurement were
collected upon euthanasia. Serum [NPY]wasmeasured using
anNPY ELISA kit (USCNLife Sciences Inc.) according to the
manufacturer’s instructions.

2.14. Intrinsic Heart Rate. A Langendorff preparation was
used to measure intrinsic heart rate. Following the euthana-
sia of animals for blood [NPY] measurement, hearts were
extracted and immediately arrested by placing them in ice
cold Krebs-Henseleit buffer (KHB). Hearts were cannu-
lated for unpaced retrograde aortic constant flow perfusion
(15mL/min) of coronary arteries with KHB (containing
120mMNaCl, 4.63MKCl, 1.17mMKH

2
PO
4
, 1.25mMCaCl

2
,

1.2mM MgCl
2
, 20mM NaHCO

3
, and 8mM glucose gassed

with 95% O
2
and 5% CO

2
) that was maintained at 37∘C [55].

Hearts were equilibrated for 30min to determine baseline
intrinsic heart rate.

2.15. DataAnalysis and Statistics. Bodyweight and blood glu-
cose concentrationswere compared using a two-way repeated
measures ANOVA, while endpoint measures were compared
by two-way ANOVA, with the exception of endpoint insulin
dose, which was compared using a one-tailed 𝑡-test. When
significance was found, pairwise comparisons were made
using the Fisher LSD post hoc test. Data are represented as
mean ± standard error, with a significance level set at 𝑝 <
0.05.

3. Results

3.1. Animal Characteristics. All groups increased in body
weight over the course of the study (𝑝 < 0.05, Figure 1(a)).
At the end of the study, the body weights of the T1DM
groups (D and DX) were lower than non-T1DM groups
(C and CX), and exercised groups (CX and DX) weighed
less than their nonexercised counterparts (C and D; 𝑝 <
0.05). Following the confirmation of diabetes, weekly [BG]
was mostly maintained in the targeted range of 9–17mM;
however, the [BG] didmove outside of this range periodically.
The [BG] in the T1DM groups were elevated in comparison
to the non-T1DM groups (𝑝 < 0.05; Figure 1(b)). Within
the non-T1DM and T1DM groups, there was no difference in
[BG] between nonexercised and exercised groups (C versus
CX and D versus DX; 𝑝 > 0.05).

3.2. Intravenous Glucose Tolerance Test and Insulin Dosages.
The glucose clearance rate (𝐾G) of the diabetic groups (D
and DX) decreased from pre-T1DM to week 10 of training
(𝑝 < 0.05), whereas𝐾G of the CX group increased (𝑝 < 0.05;
Figure 2(a)). Both diabetic groups had significantly lower𝐾G
values than both the control groups (C and CX) at week 10
(𝑝 < 0.05; Figure 2(a)). However, there was not a significant

interaction between diabetes and exercise on𝐾G.The amount
of insulin supplementation that the DX group received was
significantly less than the amount the D group received at
week 10 (𝑝 < 0.05; Figure 2(b)).

3.3. Mean Arterial Pressure, Heart Rate, and Intrinsic Heart
Rate. For resting HR and MAP, there was not a significant
difference between groups at week 10 (Figures 3(a) and 3(b),
resp.). However, for the intrinsic heart rate (IHR), there
was main effect of both exercise and T1DM, where T1DM
decreased the IHR, while exercise increased IHR (𝑝 < 0.05,
Figure 3(c)). Further, within the T1DM groups (D and DX),
exercise increased IHR,whilewithin the nonexercised groups
(C and D) T1DM decreased IHR (𝑝 < 0.05).

3.4. Heart Rate Variability. Total HRV at week 10, as mea-
sured by the standard deviation of the normal pulse wave
peaks (SDNN),was not significantly different between groups
(Figure 4(a)). However, there was a main effect of exercise
on the HF contribution to HRV, where exercise increased HF
HRV (𝑝 < 0.05, Figure 4(b)). Particularly, within the T1DM
groups (D and DX), exercise increased HF HRV (𝑝 < 0.05).

3.5. Baroreflex Sensitivity. In response to SNP infusion, there
was not a significant difference between groups in the tachy-
cardia BRS response (Figure 5(a)). However, a significant
interaction betweenT1DMand exercisewas observed for BRS
during the bradycardia response to phenylephrine (𝑝 < 0.05,
Figure 5(b)). More specifically, within the T1DM groups (D
and DX) exercise prevented the reduction in BRS that was
observed in the D group (𝑝 < 0.05).

3.6. Vascular Sympathetic Tone and Serum NPY. An inter-
action between T1DM and exercise was observed for the
prazosin-induced change in MAP (𝑝 < 0.05, Figure 6(a)).
Within the nonexercised groups (C and D), T1DM resulted
in an increased change inMAP (𝑝 < 0.05). Within the T1DM
groups (D and DX) exercise prevented the increased change
in MAP observed in the D group (𝑝 < 0.05). There was also
a main effect of T1DM on [NPY] (𝑝 < 0.05, Figure 6(b)).
Within the nonexercised groups (C and D) and exercised
groups (CX and DX), serum [NPY] was increased by T1DM
(𝑝 < 0.05).

4. Discussion

This study demonstrated that a multiple low-dose STZmodel
withmoderate hyperglycemia,maintained using insulin ther-
apy, produced deficits in cardiovascular autonomic function
without inducing the resting bradycardia or hypotension
typical of other STZ models. This study also showed that
high intensity aerobic exercise training can prevent deficits
of cardiovascular autonomic function caused by T1DM. Fur-
thermore, because [BG] was held within a moderate hyper-
glycemic range, the observed exercise-mediated improve-
ments to indications of CAN were independent of changes
in [BG] and, instead, may primarily have been the result of
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Figure 1: (a) Weekly body weights: C, sedentary control (𝑛 = 16); CX, control exercise (𝑛 = 16); D, sedentary T1DM (𝑛 = 15); DX, T1DM
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Figure 2: (a) IVGTT glucose clearance rate (𝐾G) values prior to T1DM induction (pre-T1DM) and week 10 of exercise training: C, sedentary
control (𝑛 = 16); CX, control exercise (𝑛 = 15); D, sedentary T1DM (𝑛 = 15); DX, T1DM exercise (𝑛 = 15). (b) Insulin dosages at week 10: D
(𝑛 = 16); DX (𝑛 = 16). ∗Significantly different groups (𝑝 < 0.05). #Significantly different from week 1. Data are mean ± SE.

improvements to other aspects of glucoregulation and/or the
preservation of autonomic nervous system function.

Although we found time domain analysis of total HRV,
as measured by the SDNN, did not demonstrate differences
between groups, frequency domain analysis exposed a reduc-
tion in the HF power in the D group compared with the DX
group. Since the HF power corresponds to the level of vagally
mediated parasympathetic HRV, these results demonstrate

not only the detrimental effects of T1DM on autonomic
cardiac control but also the benefits of exercise training
toward ameliorating those effects. These findings are similar
to those of other experiments of both experimental [16, 21]
and clinical diabetes [18, 56, 57]. For example, Mostarda et
al. (2009) reported that STZ-induced T1DM reduced the HF
component of HRV, which was improved by exercise [21].
Also, they found that the vagal tonus of the control exercised
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Figure 3: (a) Heart rate (beats per minute) and (b) mean arterial pressure at week 10. C, sedentary control (𝑛 = 7); CX, control exercise
(𝑛 = 7); D, sedentary T1DM (𝑛 = 8); DX, T1DM exercise (𝑛 = 10). (c) Intrinsic heart rate (IHR) at week 10. C (𝑛 = 10); CX (𝑛 = 11); D
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Figure 4: (a) Total HRV (SDNN) at week 10: C, sedentary control (𝑛 = 5); CX, control exercise (𝑛 = 7); D, sedentary T1DM (𝑛 = 8); DX,
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Figure 5: (a) Tachycardia baroreflex response sensitivity to sodiumnitroprusside at week 10: C, sedentary control (𝑛 = 7); CX, control exercise
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Figure 6: (a) Vascular sympathetic tone (VST) at week 10. This was determined by measuring the percent change in MAP after prazosin
treatment at week 10: C, sedentary control (𝑛 = 8); CX, control exercise (𝑛 = 7); D, sedentary T1DM (𝑛 = 5); DX, T1DM exercise (𝑛 = 7). (b)
Serum NPY at week 10: C (𝑛 = 6); CX (𝑛 = 6); D (𝑛 = 6); DX (𝑛 = 6). ∗Significantly different groups (𝑝 < 0.05). Data are mean ± SE.

rats did not differ from sedentary controls [21]. Likewise,
Chen et al. (2008) reported that children with T1DM who
performed a high level of physical activity did not differ from
controls in HRV; however, children with T1DM who had
low level of physical activity had significantly reduced HRV
compared to both active children with T1DM and non-T1DM
children [18]. Thus, the current study provides support that
exercise can be an effective means to improve HRV in T1DM.

Both tachycardia and bradycardia responses were studied
in the context of BRS analysis in order to explore the control
features related to unloading or loading of the barorecep-
tors, respectively. Some discrepancy exists between different
experimental models of T1DM and their impact on BRSmea-
sures. Investigations using the hyperglycemic Non-Obese
Diabetic (NOD) T1DM mouse model have shown elevations
in BRS measures rather than attenuated responses [58].
In contrast, tachycardic-SNP and bradycardic-PE responses

have been shown to be lower in STZ-induced T1DM hyper-
glycemic rats in comparison to non-T1DM controls [21] but
were improved with exercise training [59]. In the current
study, the slope of the hypotensive tachycardia response
was not significantly different between any of the groups
suggesting that responses to baroreceptor unloading are not
affected by T1DM or exercise. However, T1DM reduced the
bradycardia response to baroreceptor loading, which was
nullified by concurrent exercise training. These findings are
in line with previous reports demonstrating a bradycardia
change in PE-BRS without an accompanying change in SNP-
BRS [60], which was improved following aerobic exercise
[61]. Discrepancies in BRS responses in T1DM models seem
to be closely associated with both the duration and the sever-
ity of diabetes. A recent study examining the time-course
of BRS changes in response to STZ-induced hyperglycemia
reported that alteration of the SNP-BRS was not evident
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until 12 weeks of diabetes, while a change in PE-BRS was
evident as early as 4 weeks after induction [62]. Interestingly,
the animals in the aforementioned study were moderately
hyperglycemic (16–18mM), suggesting that the severity of
the hyperglycemia may play a role in the progression of this
neuropathy. This relationship has also been demonstrated
in humans. Vinik and Ziegler (2007) reported that poor
glycemic control [63] and duration of diabetes [64] play
a central role in progression of cardiovascular autonomic
neuropathy. Yet, it is not clear what role insulin therapy
may play in the neuropathy. Insulin supplementation to STZ-
induced T1DM rats canmodify the changes in BRS sensitivity
evident at 48 weeks of T1DM [65]. Indeed, in clinical T1DM
patients, intensive therapy is well documented to slow the
progression and delay the appearance of abnormal autonomic
function [66].

However, the current study provides evidence that the
ability of exercise to ameliorate cardiovascular autonomic
dysfunctionmay be independent of its ability to reduce [BG],
which challenges the direct relationship between [BG] and
CAN suggested by previous studies [67–69]. The IVGTT
performed at the conclusion of the 10-week exercise period
demonstrated an increased glucose clearance rate (𝐾G) and
therefore glucose tolerance, in the CX group compared to the
preexercise training period. However, in both the sedentary
and exercise diabetic groups there was an equal decline in
𝐾G to nearly the same rate. This decrease was significantly
different from pre-T1DM values and the week 10 values of
the C and CX groups. While this would normally indicate
that both of the diabetic groups developed equally impaired
glucose tolerance, it was also the case that the DX group
required approximately half of the dosage of exogenous
insulin compared to the D group to maintain their [BG] in
the 9–17mM range. With double the insulin dose, it is likely
that the total serum insulin over a given time during IVGTT
would have been greater in the D than DX group, and with
their 𝐾G being equal, that would indicate that there was a
greater insulin sensitivity in the diabetic exercise group [70,
71]. Together, these IVGTT results demonstrate that exercise
training improved glucose tolerance and insulin sensitivity
[67]. Furthermore, since the [BG] of the diabetic groups in
this study was held in a constant range, any abovementioned
exercise-induced improvements to CV autonomic function
would not have been mediated through a reduction in
systemic [BG] but may have been the result of improvements
in insulin sensitivity and glucose utilization [72, 73]. This
should be borne in mind when considering the effects of
diabetes and exercise on indices of CV autonomic function,
such as HRV and BRS.

An alternative mechanism by which exercise can influ-
ence BRS was reported by Bernardi et al. (2011), who
elucidated the importance of tissue oxygenation in T1DM
[74]. They demonstrated that a reduced parasympathetic
BRS in patients with T1DM was improved by both oxygen
supplementation and deep breathing to the same degree,
which indicated the increased respiration and oxygen deliv-
ery resultant of exercise could have been mediating increases
in BRS. This led the authors to suggest that hypoxia in

T1DM functionally restrains parasympathetic activity. How-
ever, reduced BRS could also be attributed to defects in the
baroreceptors, baroreceptor afferent nerves, CNS structures,
or efferent fibres of the baroreflex circuit [7, 8, 61]. In the
present study, the finding that the tachycardia response of the
baroreflex was unimpaired by T1DM, while the bradycardia
response was, suggests that the afferent arm and central
regulators of the baroreflex were not dysfunctional and that
the observed decrement of baroreflex bradycardia may have
been caused partly by alterations in efferent parasympathetic
outflow [8, 29]. The smaller HF HRV in the D group is
consistent with this interpretation.

Another interesting outcome of the current study was the
alteration of sympathetic vasomotor control in the D group,
which was also modified by concurrent exercise training. In
this study, prazosin treatment resulted in a drop in MAP that
was approximately twofold greater in the D group compared
to the C andDX groups, which is indicative of a much greater
sympathetic contribution to the maintenance of baseline
vascular resistance [75, 76]. Similarly, Martinez-Nieves and
Dunbar (1999) reported that male T1DM rats had a greater
decrease inMAP after a bolus injection of prazosin compared
to their control cohorts [77]. However, they postulated that
an elevated prazosin response could be the result of increased
𝛼
1
-adrenergic receptor sensitivity [77]. Yet, in this study, the

finding that treatment with PE, an 𝛼
1
-adrenergic receptor

agonist, did not result in a greater peak SBP, nor a greater
percent increase in SBP from baseline in the T1DM group
(data not shown), argues against a receptor-based sensitivity
mechanism and, rather, suggests that efferent sympathetic
outflowmay have been elevated in the D group. However, we
cannot determine the mechanism that resulted in prazosin
showing a preferential decrease inMAP in theD group versus
DX or C based on the data in this study. Yet, in line with the
current results, such elevations in resting sympathetic activity
would make activation of the BRS response to SNP-induced
hypotension more difficult.

The conclusion above regarding sympathetic hyperactiv-
ity in the D group is supported by measurements of neu-
ropeptideY [NPY] obtained in this study. [NPY] is coreleased
with norepinephrine from perivascular and cardiac sympa-
thetic nerve terminals during sympathetic activation [78,
79]. In clinical T1DM, a diabetes-related decrease in [NPY]
is attributed to impaired sympathetic function, whereas
increased [NPY] is attributed to sympathetic overactivity
[79–81]. In the current study, serum [NPY] was greater in
both of the T1DM groups in comparison to their control
groups. This finding is consistent with elevated sympathetic
outflow in clinical T1DM [81]. Interestingly, no major impact
of exercise was observed on serum [NPY]. Thus, despite
the ability of exercise to preserve reflex cardiac function
in T1DM, hyperglycemia itself appears to have impacted
basal vascular adrenergic activity in both T1DM groups.
This observation is consistent with the sympathoexcitatory
effect of hyperglycemia [82]. As both T1DM groups were
maintained at equally elevated [BG], there may have been
a correspondingly similar stimulation of peripheral sympa-
thetic activation and NPY release [79, 82, 83].
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Despite improvements by exercise training to deficits of
cardiovascular autonomic function, no observable statistical
differences in either MAP or HR were evident between any
of the groups. Indeed, it has been shown that alterations in
autonomic function occur before or without alterations in
MAP and HR and are uncorrelated to changes in sympa-
thetic tone [84]. The observed changes in basal sympathetic
activity may assist in the maintenance of blood pressure,
ventricular function, and cardiac output during the early
stage of diabetes, which is supported by our findings that
inhibition of sympathetic activity results in a greater decrease
in MAP in diabetic rats than normal rats [85]. In that
respect, we previously reported that although T1DM animals
demonstrated significant alterations in myocardial dimen-
sions and structure, measurements of cardiac performance
(ejection fraction, fractional shortening, and cardiac output
measurements) were unchanged [44].

To evaluate the heart rate of these animals without neural
influence, we measured the beat rate of denervated hearts
using the isolated Langendorff technique. We found that the
IHR of the D group was lower than both C and DX groups,
which would support the notion that decreased IHR masked
the effects of sympathetic overactivity in the current study.
Further, it supports evidence that STZ-induced diabetes may
have a direct effect on heart rate by modifying the heart itself
[86, 87]. Interestingly, in some studies, insulin therapy was
only able to partially reverse bradycardia and it was shown
that STZ-treatment itself could lengthen the action potential
duration in the SA node, slowing the HR [88]. However, if
hyperglycemia or STZ directly affected cardiac muscle or the
SA node and caused a decreased IHR in the D group, it is
also the case that exercise training rescued or prevented the
deficit, as the IHR of the DX group was not different from
the CX group. Thus, previous experimental T1DM studies
that reported that STZ-induced bradycardia and hypotension
were caused by CAN, and that exercise-induced normal-
ization of HR and BP was evidence of improvements in
autonomic function, may really have been observing changes
in intrinsic cardiac function which were independent of
autonomic control. Such changes could instead have been due
to depressed sarcoplasmic reticulum function or impaired
calcium handling [87, 89, 90]. Therefore, the direct effects
of STZ on the heart and IHR require further examination
and should be taken into consideration in future studies that
investigate the autonomic regulation of CV function in STZ-
induced T1DMmodels.

An important consideration regarding the design of the
current study was the use of anesthetized rats. In order
to accurately reflect cardiovascular parameters in such a
state, we selected an anaesthetic regime that provides the
lowest level of influence on baseline and reflexive CV control
attainable in rodent models [50]. A light plane anesthesia
0.5–1.2 g/kg has been shown to maintain the integrity of the
cardiovascular system,where higher doses of urethane (above
1.5 g/kg) can produce hypotension and bradycardia, as well
as high rates of mortality [91, 92]. In the current study we
used a minimal dose of 25mg/kg, which was reported in
previous studies by our laboratory to have little influence on
neurovascular blood flow measures [93–95]. That being said,

it cannot be determined towhat extent, if at all, the autonomic
nervous system was augmented by the urethane-chloralose
treatment in comparison to conscious animals. Further work
examining a comparison of our anesthesia regime with freely
moving conscious animals (using telemetry devices) will
better address this matter.

5. Conclusions

In this study, T1DM induced indications of parasympa-
thetic withdrawal, sympathetic overactivity, and, despite a
decreased IHR, no change in resting MAP or HR. However,
concurrent exercise training with T1DM maintained the
sensitivity of the parasympathetically mediated baroreflex
bradycardia, prevented an increase in vascular sympathetic
tone, maintained a higher bodyweight, and prevented a
decrease in IHR. The ability of exercise training to preserve
parasympathetic function in this model of T1DM indicates
that the exercise-mediated improvements to parasympathetic
function are independent of alterations in [BG]. However,
the finding that [NPY] remained elevated suggests that
hyperglycemia has a direct impact on adrenergic activity.
Taken together, our T1DM model of progressive STZ induc-
tion and insulin treatment induced autonomic impairments
similar to those observed in clinical T1DM and demonstrates
the novelty of this model for investigating the effectiveness
of high intensity aerobic exercise training as a means to
prevent the progression of CAN in T1DM. Thus, although
not examined in this study, the mechanisms that underlie the
physiological changes caused by T1DM and exercise can be
the focus of future investigations using this model.
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[95] T. D. Olver, K. N. Grisé, M. W. McDonald, A. Dey, M. D. Allen,
C. L. Rice et al., “The relationship between blood pressure and
sciatic nerve blood flow velocity in rats with insulin-treated
experimental diabetes,”Diabetes and Vascular Disease Research,
vol. 11, no. 4, pp. 281–289, 2014.



Submit your manuscripts at
http://www.hindawi.com

Stem Cells
International

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

MEDIATORS
INFLAMMATION

of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Behavioural 
Neurology

Endocrinology
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Disease Markers

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

BioMed 
Research International

Oncology
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Oxidative Medicine and 
Cellular Longevity

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

PPAR Research

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Immunology Research
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Obesity
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Computational and  
Mathematical Methods 
in Medicine

Ophthalmology
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Diabetes Research
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Research and Treatment
AIDS

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Gastroenterology 
Research and Practice

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Parkinson’s 
Disease

Evidence-Based 
Complementary and 
Alternative Medicine

Volume 2014
Hindawi Publishing Corporation
http://www.hindawi.com


	High intensity aerobic exercise training improves deficits of cardiovascular autonomic function in a rat model of type 1 diabetes mellitus with moderate hyperglycemia
	Citation of this paper:
	Authors

	8164518.dvi

