13 research outputs found

    Modularity and predicted functions of the global sponge-microbiome network

    Get PDF
    Defining the organisation of species interaction networks and unveiling the processes behind their assembly is fundamental to understanding patterns of biodiversity, community stability and ecosystem functioning. Marine sponges host complex communities of microorganisms that contribute to their health and survival, yet the mechanisms behind microbiome assembly are largely unknown. We present the global marine sponge-microbiome network and reveal a modular organisation in both community structure and function. Modules are linked by a few sponge species that share microbes with other species around the world. Further, we provide evidence that abiotic factors influence the structuring of the sponge microbiome when considering all microbes present, but biotic interactions drive the assembly of more intimately associated 'core' microorganisms. These findings suggest that both ecological and evolutionary processes are at play in host-microbe network assembly. We expect mechanisms behind microbiome assembly to be consistent across multicellular hosts throughout the tree of life

    A review of a decade of lessons from one of the world’s largest MPAs: conservation gains and key challenges

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this recordtribute to global conservation targets, we review outcomes of the last decade of marine conservation research in the British Indian Ocean Territory (BIOT), one of the largest MPAs in the world. The BIOT MPA consists of the atolls of the Chagos Archipelago, interspersed with and surrounded by deep oceanic waters. Islands around the atoll rims serve as nesting grounds for sea birds. Extensive and diverse shallow and mesophotic reef habitats provide essential habitat and feeding grounds for all marine life, and the absence of local human impacts may improve recovery after coral bleaching events. Census data have shown recent increases in the abundance of sea turtles, high numbers of nesting seabirds and high fsh abundance, at least some of which is linked to the lack of recent harvesting. For example, across the archipelago the annual number of green turtle clutches (Chelonia mydas) is~20,500 and increasing and the number of seabirds is ~1 million. Animal tracking studies have shown that some taxa breed and/or forage consistently within the MPA (e.g. some reef fshes, elasmobranchs and seabirds), suggesting the MPA has the potential to provide long-term protection. In contrast, post-nesting green turtles travel up to 4000 km to distant foraging sites, so the protected beaches in the Chagos Archipelago provide a nesting sanctuary for individuals that forage across an ocean basin and several geopolitical borders. Surveys using divers and underwater video systems show high habitat diversity and abundant marine life on all trophic levels. For example, coral cover can be as high as 40–50%. Ecological studies are shedding light on how remote ecosystems function, connect to each other and respond to climate-driven stressors compared to other locations that are more locally impacted. However, important threats to this MPA have been identifed, particularly global heating events, and Illegal, Unreported and Unregulated (IUU) fshing activity, which considerably impact both reef and pelagic fshes.Bertarelli Foundatio

    Wave exposure shapes reef community composition and recovery trajectories at a remote coral atoll (dataset)

    No full text
    These data tables accompany the article "Wave exposure shapes reef community composition and recovery trajectories at a remote coral atoll" and contain benthic community data for Salomon atoll, Chagos Archipelago, central Indian Ocean. Tables '2020' and '2006' contain cover of benthic categories from the analyses of photographs at 23 and 22 for reef sites, respectively. Table 'avg 2006-2019' contains average cover of benthic categories at sheltered and exposed sites in 2006, 2010, 2016, 2018, 2019 and 2020.The article associated with this dataset is available in ORE at: http://hdl.handle.net/10871/127290In a time of unprecedented ecological change, understanding natural biophysical relationships between reef resilience and physical drivers is of increasing importance. This study evaluates how wave forcing structures coral reef benthic community composition and recovery trajectories after the major 2015/2016 bleaching event in the remote Chagos Archipelago, Indian Ocean. Benthic cover and substrate rugosity were quantified from digital imagery at 23 fore reef sites around a small coral atoll (Salomon) in 2020 and compared to data from a similar survey in 2006 and opportunistic surveys in intermediate years. Cluster analysis and principal component analysis show strong separation of community composition between exposed (modelled wave exposure >1000 J m-3) and sheltered sites (<1000 J m-3) in 2020. This difference is driven by relatively high cover of Porites sp., other massive corals, encrusting corals, soft corals, rubble and dead table corals at sheltered sites versus high cover of pavement and sponges at exposed sites. Total coral cover and rugosity were also higher at sheltered sites. Adding data from previous years shows benthic community shifts from distinct exposure-driven assemblages and high live coral cover in 2006 towards bare pavement, dead Acropora tables and rubble after the 2015/2016 bleaching event. The subsequent recovery trajectories at sheltered and exposed sites are surprisingly parallel and lead communities towards their respective pre-bleaching communities. These results demonstrate that in the absence of human stressors, community patterns on fore reefs are strongly controlled by wave exposure, even during and after widespread coral loss from bleaching events.Bertarelli FoundationBertarelli Foundatio

    Molecular and morphological insights into the origin of the invasive greater white-toothed shrew (Crocidura russula) in Ireland

    No full text
    Identifying routes of invasion is a critical management strategy in controlling the spread of invasive species. This is challenging however in the absence of direct evidence. Therefore, indirect methodologies are used to infer possible invasion sources and routes, such as comparisons of genetic and morphological data from populations from invasive ranges and putative source areas. The greater white-toothed shrew (Crocidura russula) was first discovered in Ireland from skeletal remains in the pellets of birds of prey collected in 2007 and is it is now sufficiently established that the species has a detrimental impact on Ireland’s small mammal community. In this study, we address the uncertain origin(s) of the Irish population of C. russula. The cytochrome b gene of mitochondrial DNA was analysed from 143 individuals from throughout its range within a phylogenetic and approximate Bayesian computation (ABC) framework. These analyses revealed that the Irish population stemmed from Europe as opposed to North Africa. Additionally, mandibles from 523 individuals from Ireland and 28 other European populations were subjected to multivariate and distance-based analyses, which demonstrated an association between the Irish population and those in France, Switzerland and Belgium. When the genetic and morphological analyses were considered together, an origin stemming from France was deemed the most likely scenario for the source of the invasive Irish population. This study has demonstrated the importance of utilising a multidisciplinary approach when attempting to identify the origins and invasion routes of invasive species

    A review of a decade of lessons from one of the world's largest MPAs: conservation gains and key challenges

    No full text
    Given the recent trend towards establishing very large marine protected areas (MPAs) and the high potential of these to contribute to global conservation targets, we review outcomes of the last decade of marine conservation research in the British Indian Ocean Territory (BIOT), one of the largest MPAs in the world. The BIOT MPA consists of the atolls of the Chagos Archipelago, interspersed with and surrounded by deep oceanic waters. Islands around the atoll rims serve as nesting grounds for sea birds. Extensive and diverse shallow and mesophotic reef habitats provide essential habitat and feeding grounds for all marine life, and the absence of local human impacts may improve recovery after coral bleaching events. Census data have shown recent increases in the abundance of sea turtles, high numbers of nesting seabirds and high fish abundance, at least some of which is linked to the lack of recent harvesting. For example, across the archipelago the annual number of green turtle clutches (Chelonia mydas) is ~ 20,500 and increasing and the number of seabirds is ~ 1 million. Animal tracking studies have shown that some taxa breed and/or forage consistently within the MPA (e.g. some reef fishes, elasmobranchs and seabirds), suggesting the MPA has the potential to provide long-term protection. In contrast, post-nesting green turtles travel up to 4000 km to distant foraging sites, so the protected beaches in the Chagos Archipelago provide a nesting sanctuary for individuals that forage across an ocean basin and several geopolitical borders. Surveys using divers and underwater video systems show high habitat diversity and abundant marine life on all trophic levels. For example, coral cover can be as high as 40–50%. Ecological studies are shedding light on how remote ecosystems function, connect to each other and respond to climate-driven stressors compared to other locations that are more locally impacted. However, important threats to this MPA have been identified, particularly global heating events, and Illegal, Unreported and Unregulated (IUU) fishing activity, which considerably impact both reef and pelagic fishes
    corecore