539 research outputs found
Cosmological evolution of scalar fields and gravitino dark matter in gauge mediation at low reheating temperatures
We consider the dynamics of the supersymmetry-breaking scalar field and the
production of dark matter gravitinos via its decay in a gauge-mediated
supersymmetry breaking model with metastable vacuum. We find that the scalar
field amplitude and gravitino density are extremely sensitive to the parameters
of the hidden sector. For the case of an O'Raifeartaigh sector, we show that
the observed dark matter density can be explained by gravitinos even for low
reheating temperatures T_{R} < 10 GeV. Such low reheating temperatures may be
implied by detection of the NLSP at the LHC if its thermal freeze-out density
is in conflict with BBN.Comment: 11 pages RevTex. Extended discussion and minor corrections,
conclusions unaltered. Version to be published in JCA
Sequential Analysis: A Methodology for Monitoring Approval Plans
published or submitted for publicatio
Bose Einstein condensation at reheating
We discuss the possibility that a perturbative reheating stage after
inflation produces a scalar particle gas in a Bose condensate state,
emphasizing the possible cosmological role of this phenomenon for symmetry
restoration.Comment: 4 pages, 4 figures. Revised version, with an improved analysis of the
condensate formatio
Scalar Dark Matter From Theory Space
The scalar dark matter candidate in a prototypical theory space little Higgs
model is investigated. We review all details of the model pertinent to dark
matter. We perform a thermal relic density calculation including couplings to
the gauge and Higgs sectors of the model. We find two regions of parameter
space that give acceptable dark matter abundances. The first region has a dark
matter candidate with a mass of order 100 GeV, the second region has a heavy
candidate with a mass greater than about 500 GeV$. The dark matter candidate in
either region is an admixture of an SU(2) triplet and an SU(2) singlet, thereby
constituting a WIMP (weakly interacting massive particle).Comment: 18 pages, 2 figures, version to appear in PR
Leptogenesis and rescattering in supersymmetric models
The observed baryon asymmetry of the Universe can be due to the
violating decay of heavy right handed (s)neutrinos. The amount of the asymmetry
depends crucially on their number density. If the (s)neutrinos are generated
thermally, in supersymmetric models there is limited parameter space leading to
enough baryons. For this reason, several alternative mechanisms have been
proposed. We discuss the nonperturbative production of sneutrino quanta by a
direct coupling to the inflaton. This production dominates over the
corresponding creation of neutrinos, and it can easily (i.e. even for a rather
small inflaton-sneutrino coupling) lead to a sufficient baryon asymmetry. We
then study the amplification of MSSM degrees of freedom, via their coupling to
the sneutrinos, during the rescattering phase which follows the nonperturbative
production. This process, which mainly influences the (MSSM) flat
directions, is very efficient as long as the sneutrinos quanta are in the
relativistic regime. The rapid amplification of the light degrees of freedom
may potentially lead to a gravitino problem. We estimate the gravitino
production by means of a perturbative calculation, discussing the regime in
which we expect it to be reliable.Comment: (20 pages, 6 figures), references added, typos corrected. Final
version in revte
Leptogenesis from a sneutrino condensate revisited
We re--examine leptogenesis from a right--handed sneutrino condensate, paying
special attention to the term associated with the see--saw Majorana mass.
This term generates a lepton asymmetry in the condensate whose time average
vanishes. However, a net asymmetry will result if the sneutrino lifetime is not
much longer than the period of oscillations. Supersymmetry breaking by thermal
effects then yields a lepton asymmetry in the standard model sector after the
condensate decays. We explore different possibilities by taking account of both
the low--energy and Hubble terms. It will be shown that the desired baryon
asymmetry of the Universe can be obtained for a wide range of Majorana mass.Comment: 17 revtex pages, 3 figures, 1 table. Slightly modified and references
added. Final version accepted for publication in Phys. Rev.
Circulating heart failure biomarkers beyond natriuretic peptides:review from the Biomarker Study Group of the Heart Failure Association (HFA), European Society of Cardiology (ESC)
New biomarkers are being evaluated for their ability to advance the management of patients with heart failure. Despite a large pool of interesting candidate biomarkers, besides natriuretic peptides virtually none have succeeded in being applied into the clinical setting. In this review, we examine the most promising emerging candidates for clinical assessment and management of patients with heart failure. We discuss high-sensitivity cardiac troponins (Tn), procalcitonin, novel kidney markers, soluble suppression of tumorigenicity 2 (sST2), galectin-3, growth differentiation factor-15 (GDF-15), cluster of differentiation 146 (CD146), neprilysin, adrenomedullin (ADM), and also discuss proteomics and genetic-based risk scores. We focused on guidance and assistance with daily clinical care decision-making. For each biomarker, analytical considerations are discussed, as well as performance regarding diagnosis and prognosis. Furthermore, we discuss potential implementation in clinical algorithms and in ongoing clinical trials.</p
Curvatons in Supersymmetric Models
We study the curvaton scenario in supersymmetric framework paying particular
attention to the fact that scalar fields are inevitably complex in
supersymmetric theories. If there are more than one scalar fields associated
with the curvaton mechanism, isocurvature (entropy) fluctuations between those
fields in general arise, which may significantly affect the properties of the
cosmic density fluctuations. We examine several candidates for the curvaton in
the supersymmetric framework, such as moduli fields, Affleck-Dine field, -
and -flat directions, and right-handed sneutrino. We estimate how the
isocurvature fluctuations generated in each case affect the cosmic microwave
background angular power spectrum. With the use of the recent observational
result of the WMAP, stringent constraints on the models are derived and, in
particular, it is seen that large fraction of the parameter space is excluded
if the Affleck-Dine field plays the role of the curvaton field. Natural and
well-motivated candidates of the curvaton are also listed.Comment: 34 pages, 5 figure
Cytogenetic characterization of telomeres in the holocentric chromosomes of the lepidopteran Mamestra brassicae
Telomeres of the Mamestra brassica holocentric chromosomes were studied by Southern blotting, in-situ hybridization and Bal31 assay evidencing the presence of the telomeric (TTAGG)(n) repeat. Successively, molecular analysis of telomeres showed that TRAS1 transposable elements were present at the subtelomeric regions of autosomes but not in the NOR-bearing telomeres of the Z and W sex chromosomes. TRAS1 appeared to be transcriptionally active and non-methylated, as evaluated by RT-PCR and digestion with MspI and HpaII. Finally, dot-blotting experiments showed that the 2.8 +/- 0.5% of the M. brassicae genome consists of TRAS1
Constrained Supersymmetric Flipped SU(5) GUT Phenomenology
We explore the phenomenology of the minimal supersymmetric flipped SU(5) GUT
model (CFSU(5)), whose soft supersymmetry-breaking (SSB) mass parameters are
constrained to be universal at some input scale, , above the GUT scale,
. We analyze the parameter space of CFSU(5) assuming that the lightest
supersymmetric particle (LSP) provides the cosmological cold dark matter,
paying careful attention to the matching of parameters at the GUT scale. We
first display some specific examples of the evolutions of the SSB parameters
that exhibit some generic features. Specifically, we note that the relationship
between the masses of the lightest neutralino and the lighter stau is sensitive
to , as is the relationship between the neutralino mass and the masses
of the heavier Higgs bosons. For these reasons, prominent features in generic
planes such as coannihilation strips and rapid-annihilation
funnels are also sensitive to , as we illustrate for several cases with
tan(beta)=10 and 55. However, these features do not necessarily disappear at
large , unlike the case in the minimal conventional SU(5) GUT. Our
results are relatively insensitive to neutrino masses.Comment: 23 pages, 8 figures; (v2) added explanations and corrected typos,
version to appear in EPJ
- …