735 research outputs found

    Commercial and Human Settlement of the Moon and Cislunar Space A Look Ahead at the Possibilities over the Next 50 Years

    Get PDF
    Over 50 years have passed since the movie 2001: A Space Odyssey debuted in April 1968. In the film, Dr. Heywood Floyd flies to a large artificial gravity space station orbiting Earth aboard a commercial space plane. He then embarks on a commuter flight to the Moon arriving there 25 hours later. Today, on the 50th anniversary of the Apollo 11 lunar landing, the images portrayed in 2001 still remain well beyond our capabilities. This paper examines key technologies and systems (in-situ resource utilization, fission power, advanced chemical and nuclear propulsion), and orbiting infrastructure elements (providing a propellant depot and cargo transfer function), that could be developed by NASA and the private sector in future decades allowing the operational capabilities presented in 2001 to be achieved, albeit on a more spartan scale. Lunar-derived propellants (LDPs) will be essential to reducing the launch mass requirements from Earth and developing a reusable lunar transportation system (LTS) that can allow initial outposts to evolve into settlements supporting a variety of commercial activities like in-situ propellant production. Deposits of icy regolith found within permanently shadowed craters at the lunar poles can supply the feedstock material to produce liquid oxygen (LO2) and hydrogen (LH2) propellant needed by surface-based lunar landing vehicles (LLVs) using chemical rocket engines. Along the Moons nearside equatorial corridor, iron oxide-rich volcanic glass beads from vast pyroclastic deposits, together with mare regolith, can provide the materials to produce lunar-derived LO2 plus other important solar wind implanted (SWI) volatiles, including H2 and helium-3. Megawatt-class fission power systems will be essential for providing continuous 24/7 power to processing plants, evolving human settlements, and other commercial activities that develop on the Moon and in orbit. Reusable LLVs will provide cargo and passenger orbit-to-surface access and will also be used to transport LDP to Space Transportation Nodes (STNs) located in lunar polar (LPO) and equatorial orbits (LLO). Spaced-based, reusable lunar transfer vehicles (LTVs), operating between STNs in low Earth orbit (LEO), LLO, and LPO, and able to refuel with LDPs, can offer unique mission capabilities including short transit time crewed cargo transports. Even a commuter shuttle service similar to that portrayed in 2001 appears possible, allowing 1-way trip times to and from the Moon as short as 24 hours. The performance of LTVs using both RL10B-2 chemical rockets, and a variant of the nuclear thermal rocket (NTR), the LO2-Augmented NTR (LANTR), are examined and compared. The bipropellant LANTR engine utilizes its divergent nozzle section as an afterburner into which oxygen is injected and supersonically combusted with reactor-heated hydrogen emerging from the engines sonic throat. If only 1% of the LDP obtained from icy regolith, volcanic glass, and SWI volatile deposits were available for use in lunar orbit, such a supply could support routine commuter flights to the Moon for many thousands of years! This paper provides a look ahead at what might be possible in the not too distant future, quantifies the operational characteristics of key in-space and surface technologies and systems, and provides conceptual designs for the various architectural elements discussed

    Key Technologies, Systems, and Infrastructure Enabling the Commercialization and Human Settlement of the Moon and Cislunar Space

    Get PDF
    Over 50 years have passed since 2001: A Space Odyssey debuted in April 1968. In the film, Dr. Heywood Floydflies to a large artificial gravity space station orbiting Earth aboard a commercial space plane. He then embarks on acommuter flight to the Moon arriving there 25 hours later. Today, in this the 50th anniversary year of the Apollo 11lunar landing, the images portrayed in 2001 still remain well beyond our capabilities. This paper examines keytechnologies and systems (e.g., in-situ resource utilization, fission power, advanced chemical and nuclearpropulsion), and supporting orbital infrastructure (providing a propellant and cargo transfer function), that could bedeveloped by NASA and industry over the next 30 years allowing the operational capabilities presented in 2001 to beachieved, albeit on a more spartan scale. Lunar-derived propellants (LDPs) will be essential to developing a reusablelunar transportation system that can allow initial outposts to evolve into settlements supporting a variety ofcommercial activities. Deposits of icy regolith discovered at the lunar poles can supply the feedstock material neededto produce liquid oxygen (LO2) and hydrogen (LH2) propellants. On the lunar nearside, near the equator, iron oxiderichvolcanic glass beads from vast pyroclastic deposits, together with mare regolith, can provide the feedstockmaterials to produce lunar-derived LO2 plus other important solar wind implanted (SWI) volatiles, including H2and helium-3. Megawatt-class fission power systems will be essential for providing continuous "24/7" power toprocessing plants, human settlements and commercial enterprises that develop on the Moon and in orbit. Reusablelunar landing vehicles will provide cargo and passenger "orbit-to-surface" access and will also transport LDP to Space Transportation Nodes (STNs) located in lunar polar (LPO) and equatorial orbits (LLO). Reusable space-based,lunar transfer vehicles (LTVs), operating between STNs in low Earth orbit, LLO, and LPO, and able to refuel with LDPs, offer unique mission capabilities including short transit time crewed cargo transports. Even commuter flights similar to that portrayed in 2001 appear possible, allowing 1-way trip times to and from the Moon as short as 24hours. The performance of LTVs using both RL10B-2 chemical rockets, and a variant of the nuclear thermal rocket(NTR), the LO2-Augmented NTR (LANTR), are examined and compared. If only 1% of the LDP obtained from icyregolith, volcanic glass, and SWI volatile deposits were available for use in lunar orbit, such a supply could support routine commuter flights to the Moon for many thousands of years. This paper provides a look ahead at what might be possible in the not too distant future, quantifies the operational characteristics of key in-space and surface technologies and systems, and provides conceptual designs for the various architectural elements discussed

    Key Technologies, Systems, and Infrastructure Enabling the Commercialization and Human Settlement of the Moon and Cislunar Space

    Get PDF
    Over 50 years have passed since 2001: A Space Odyssey debuted in April 1968. In the film, Dr. Heywood Floydflies to a large artificial gravity space station orbiting Earth aboard a commercial space plane. He then embarks on acommuter flight to the Moon arriving there 25 hours later. Today, in this the 50th anniversary year of the Apollo 11lunar landing, the images portrayed in 2001 still remain well beyond our capabilities. This paper examines keytechnologies and systems (e.g., in-situ resource utilization, fission power, advanced chemical and nuclearpropulsion), and supporting orbital infrastructure (providing a propellant and cargo transfer function), that could bedeveloped by NASA and industry over the next 30 years allowing the operational capabilities presented in 2001 to beachieved, albeit on a more spartan scale. Lunar-derived propellants (LDPs) will be essential to developing a reusablelunar transportation system that can allow initial outposts to evolve into settlements supporting a variety ofcommercial activities. Deposits of icy regolith discovered at the lunar poles can supply the feedstock material neededto produce liquid oxygen (LO2) and hydrogen (LH2) propellants. On the lunar nearside, near the equator, iron oxiderichvolcanic glass beads from vast pyroclastic deposits, together with mare regolith, can provide the feedstockmaterials to produce lunar-derived LO2 plus other important solar wind implanted (SWI) volatiles, including H2and helium-3. Megawatt-class fission power systems will be essential for providing continuous "24/7" power toprocessing plants, human settlements and commercial enterprises that develop on the Moon and in orbit. Reusablelunar landing vehicles will provide cargo and passenger "orbit-to-surface" access and will also transport LDP toSpace Transportation Nodes (STNs) located in lunar polar (LPO) and equatorial orbits (LLO). Reusable space-based,lunar transfer vehicles (LTVs), operating between STNs in low Earth orbit, LLO, and LPO, and able to refuel withLDPs, offer unique mission capabilities including short transit time crewed cargo transports. Even commuter flightssimilar to that portrayed in 2001 appear possible, allowing 1-way trip times to and from the Moon as short as 24hours. The performance of LTVs using both RL10B-2 chemical rockets, and a variant of the nuclear thermal rocket(NTR), the LO2-Augmented NTR (LANTR), are examined and compared. If only 1% of the LDP obtained from icyregolith, volcanic glass, and SWI volatile deposits were available for use in lunar orbit, such a supply could supportroutine commuter flights to the Moon for many thousands of years. This paper provides a look ahead at what mightbe possible in the not too distant future, quantifies the operational characteristics of key in-space and surfacetechnologies and systems, and provides conceptual designs for the various architectural elements discussed

    Examining increased flexibility in assessment formats

    Get PDF
    There have been calls in the literature for changes to assessment practices in higher education, to increase flexibility and give learners more control over the assessment process (Boud and Falchikov 2006; Nicol and MacFarlane-Dick 2006; Taras 2002). This article explores the possibilities of allowing student choice in the format used to present their work, as a starting point for changing assessment, based on recent studies and current examples of flexible assessment practice in Higher Education. The benefits of this flexible assessment format approach are highlighted, along with a discussion of classic assessment considerations such as validity, reliability and marking concerns. The role of technology in facilitating assessment method choice is considered, in terms of new opportunities for providing student choice in the way they evidence their learning and present their work. Considerations for implementing flexible assessment choices into the curriculum are presented, along with a call that further research into such practice is needed to develop a comprehensive set of practical recommendations and best practice for implementation of flexible assessment choice into the curriculum. The article should be of interest to curriculum developers and academics considering implementing changes to the assessment process to increase student ownership and control

    Affordable Development and Demonstration of a Small NTR Engine and Stage: How Small is Big Enough?

    Get PDF
    The Nuclear Thermal Rocket (NTR) derives its energy from fission of uranium-235 atoms contained within fuel elements that comprise the engine's reactor core. It generates high thrust and has a specific impulse potential of approximately 900 seconds - a 100% increase over today's best chemical rockets. The Nuclear Thermal Propulsion (NTP) project, funded by NASA's AES program, includes five key task activities: (1) Recapture, demonstration, and validation of heritage graphite composite (GC) fuel (selected as the "Lead Fuel" option); (2) Engine Conceptual Design; (3) Operating Requirements Definition; (4) Identification of Affordable Options for Ground Testing; and (5) Formulation of an Affordable Development Strategy. During FY'14, a preliminary DDT&E plan and schedule for NTP development was outlined by GRC, DOE and industry that involved significant system-level demonstration projects that included GTD tests at the NNSS, followed by a FTD mission. To reduce cost for the GTD tests and FTD mission, small NTR engines, in either the 7.5 or 16.5 klbf thrust class, were considered. Both engine options used GC fuel and a "common" fuel element (FE) design. The small approximately 7.5 klbf "criticality-limited" engine produces approximately 157 megawatts of thermal power (MWt) and its core is configured with parallel rows of hexagonal-shaped FEs and tie tubes (TTs) with a FE to TT ratio of approximately 1:1. The larger approximately 16.5 klbf Small Nuclear Rocket Engine (SNRE), developed by LANL at the end of the Rover program, produces approximately 367 MWt and has a FE to TT ratio of approximately 2:1. Although both engines use a common 35 inch (approximately 89 cm) long FE, the SNRE's larger diameter core contains approximately 300 more FEs needed to produce an additional 210 MWt of power. To reduce the cost of the FTD mission, a simple "1-burn" lunar flyby mission was considered to reduce the LH2 propellant loading, the stage size and complexity. Use of existing and flight proven liquid rocket and stage hardware (e.g., from the RL10B-2 engine and Delta Cryogenic Second Stage) was also maximized to further aid affordability. This paper examines the pros and cons of using these two small engine options, including their potential to support future human exploration missions to the Moon, near Earth asteroids, and Mars, and recommends a preferred size. It also provides a preliminary assessment of the key activities, development options, and schedule required to affordably build, ground test and fly a small NTR engine and stage within a 10-year timeframe

    Neutropenia in Barth syndrome:characteristics, risks, and management

    Get PDF
    PURPOSE OF REVIEW: Barth syndrome (BTHS) is an X-linked disease characterized by defective remodeling of phospholipid side chains in mitochondrial membranes. Major features include neutropenia, dilated cardiomyopathy, motor delay and proximal myopathy, feeding problems, and constitutional growth delay. We conducted this review of neutropenia in BTHS to aid in the diagnosis of this disease, and to improve understanding of both the consequences of neutropenia and the benefits of treatment with granulocyte colony-stimulating factor (G-CSF). RECENT FINDINGS: In 88 patients with BTHS, neutropenia, that is, at least one count below 1.5 × 10/l, was detected in 74 (84%) and 44% had severe chronic neutropenia, with multiple counts below 0.5 × 10/l. The pattern of neutropenia varied between intermittent and unpredictable, chronic and severe, or cyclical with mathematically regular oscillations. Monocytosis, that is, monocytes more than 1.0 × 10/l, was observed at least once in 64 of 85 (75%) patients. G-CSF was administered to 39 of 88 patients (44%). Weekly average G-CSF doses ranged from 0.12 to 10.92 μg/kg/day (mean 1.16 μg/kg/day, median 1.16 μg/kg/day). Antibiotic prophylaxis was additionally employed in 21 of 26 neutropenic patients. Pretreatment bone marrow evaluations predominantly showed reduced myeloid maturation which normalized on G-CSF therapy in seven of 13 examined. Consistent clinical improvement, with reduced signs and symptoms of infections, was observed in response to prophylactic G-CSF ± prophylactic antibiotics. However, despite G-CSF and antibiotics, one adult patient died with multiple infections related to indwelling medical devices and gastrostomy site infection after 15.5 years on G-CSF and a pediatric patient required gastrostomy removal for recurrent abdominal wall cellulitis. SUMMARY: BTHS should be considered in any men with neutropenia accompanied by any of the characteristic features of this syndrome. Prophylaxis with G-CSF ± antibiotics prevents serious bacterial infections in the more severe neutropenic patients although infections remain a threat even in patients who are very compliant with therapy, especially in those with indwelling devices

    Resonance Lifetimes from Complex Densities

    Full text link
    The ab-initio calculation of resonance lifetimes of metastable anions challenges modern quantum-chemical methods. The exact lifetime of the lowest-energy resonance is encoded into a complex "density" that can be obtained via complex-coordinate scaling. We illustrate this with one-electron examples and show how the lifetime can be extracted from the complex density in much the same way as the ground-state energy of bound systems is extracted from its ground-state density

    The dynamical Green's function and an exact optical potential for electron-molecule scattering including nuclear dynamics

    Get PDF
    We derive a rigorous optical potential for electron-molecule scattering including the effects of nuclear dynamics by extending the common many-body Green's function approach to optical potentials beyond the fixed-nuclei limit for molecular targets. Our formalism treats the projectile electron and the nuclear motion of the target molecule on the same footing whereby the dynamical optical potential rigorously accounts for the complex many-body nature of the scattering target. One central result of the present work is that the common fixed-nuclei optical potential is a valid adiabatic approximation to the dynamical optical potential even when projectile and nuclear motion are (nonadiabatically) coupled as long as the scattering energy is well below the electronic excitation thresholds of the target. For extremely low projectile velocities, however, when the cross sections are most sensitive to the scattering potential, we expect the influences of the nuclear dynamics on the optical potential to become relevant. For these cases, a systematic way to improve the adiabatic approximation to the dynamical optical potential is presented that yields non-local operators with respect to the nuclear coordinates.Comment: 22 pages, no figures, accepted for publ., Phys. Rev.

    Der Konflikt in Afghanistan : Historischer und gesellschaftlicher Hintergrund, Evolution und Lageentwicklung – ein Positionspapier

    Get PDF
    This study is part of a larger project, the aim of which is to elucidate “mental health nurses” attitudes towards their patients'. In this study, nurses' and patients' attitudes are described from the perspective of both parties using a qualitative approach. The informants were selected from a rehabilitation unit for young adults, below 40, suffering from psychosis at a psychiatric clinic that provides acute psychiatric care. The informant group consisted of three dyads: three patients with various diagnoses and three nurses with primary responsibility for the patients' daily care. The aim of this particular study was to extend our preliminary understanding of nurses' attitudes towards psychiatric patients in the context of psychiatric in-patient care, by elucidating the patient's “inner” picture of her/his past, present and future and the nurse's picture of the same patient's past, present and future. Data were collected and analysed using a phenomenological-hermeneutic approach and the narrative picturing technique. For each picture and group, 15 related sub-themes emerged, on the basis of which six themes were formulated. The findings show that the nurses overrate their own importance when it comes to the patient's well-being on the ward. All the nurses emphasize confirmation and safety as the basis of their nursing care, while in the patient's picture the nurses represent a replication of childhood demands, which probably means that nursing care risks becoming a continuation of the patient's childhood estrangement
    • …
    corecore