332 research outputs found

    Asperger's Syndrome: A Developmental Puzzle

    Get PDF

    Myostatin negatively regulates satellite cell activation and self-renewal

    Get PDF
    Satellite cells are quiescent muscle stem cells that promote postnatal muscle growth and repair. Here we show that myostatin, a TGF-β member, signals satellite cell quiescence and also negatively regulates satellite cell self-renewal. BrdU labeling in vivo revealed that, among the Myostatin-deficient satellite cells, higher numbers of satellite cells are activated as compared with wild type. In contrast, addition of Myostatin to myofiber explant cultures inhibits satellite cell activation. Cell cycle analysis confirms that Myostatin up-regulated p21, a Cdk inhibitor, and decreased the levels and activity of Cdk2 protein in satellite cells. Hence, Myostatin negatively regulates the G1 to S progression and thus maintains the quiescent status of satellite cells. Immunohistochemical analysis with CD34 antibodies indicates that there is an increased number of satellite cells per unit length of freshly isolated Mstn−/− muscle fibers. Determination of proliferation rate suggests that this elevation in satellite cell number could be due to increased self-renewal and delayed expression of the differentiation gene (myogenin) in Mstn−/− adult myoblasts. Taken together, these results suggest that Myostatin is a potent negative regulator of satellite cell activation and thus signals the quiescence of satellite cells

    Engaging Engineering Teams Through Moral Imagination: A Bottom-Up Approach for Responsible Innovation and Ethical Culture Change in Technology Companies

    Full text link
    We propose a "Moral Imagination" methodology to facilitate a culture of responsible innovation for engineering and product teams in technology companies. Our approach has been operationalized over the past two years at Google, where we have conducted over 50 workshops with teams across the organization. We argue that our approach is a crucial complement to existing formal and informal initiatives for fostering a culture of ethical awareness, deliberation, and decision-making in technology design such as company principles, ethics and privacy review procedures, and compliance controls. We characterize some of the distinctive benefits of our methodology for the technology sector in particular.Comment: 16 pages, 1 figur

    Agrin Binds BMP2, BMP4 and TGFβ1

    Get PDF
    The C-terminal 95 kDa fragment of some isoforms of vertebrate agrins is sufficient to induce clustering of acetylcholine receptors but despite two decades of intense agrin research very little is known about the function of the other isoforms and the function of the larger, N-terminal part of agrins that is common to all isoforms. Since the N-terminal part of agrins contains several follistatin-domains, a domain type that is frequently implicated in binding TGFβs, we have explored the interaction of the N-terminal part of rat agrin (Agrin-Nterm) with members of the TGFβ family using surface plasmon resonance spectroscopy and reporter assays. Here we show that agrin binds BMP2, BMP4 and TGFβ1 with relatively high affinity, the KD values of the interactions calculated from SPR experiments fall in the 10−8 M–10−7 M range. In reporter assays Agrin-Nterm inhibited the activities of BMP2 and BMP4, half maximal inhibition being achieved at ∼5×10−7 M. Paradoxically, in the case of TGFβ1 Agrin N-term caused a slight increase in activity in reporter assays. Our finding that agrin binds members of the TGFβ family may have important implications for the role of these growth factors in the regulation of synaptogenesis as well as for the role of agrin isoforms that are unable to induce clustering of acetylcholine receptors. We suggest that binding of these TGFβ family members to agrin may have a dual function: agrin may serve as a reservoir for these growth factors and may also inhibit their growth promoting activity. Based on analysis of the evolutionary history of agrin we suggest that agrin's growth factor binding function is more ancient than its involvement in acetylcholine receptor clustering

    Transforming growth factor‐beta induces skeletal muscle atrophy and fibrosis through the induction of atrogin‐1 and scleraxis

    Full text link
    Introduction: Transforming growth factor‐beta (TGF‐β) is a well‐known regulator of fibrosis and inflammation in many tissues. During embryonic development, TGF‐β signaling induces expression of the transcription factor scleraxis, which promotes fibroblast proliferation and collagen synthesis in tendons. In skeletal muscle, TGF‐β has been shown to induce atrophy and fibrosis, but the effect of TGF‐β on muscle contractility and the expression of scleraxis and atrogin‐1, an important regulator of muscle atrophy, were not known. Methods: We treated muscles from mice with TGF‐β and measured force production, scleraxis, procollagen Iα2, and atrogin‐1 protein levels. Results: TGF‐β decreased muscle fiber size and dramatically reduced maximum isometric force production. TGF‐β also induced scleraxis expression in muscle fibroblasts, and increased procollagen Iα2 and atrogin‐1 levels in muscles. Conclusion: These results provide new insight into the effect of TGF‐β on muscle contractility and the molecular mechanisms behind TGF‐β–mediated muscle atrophy and fibrosis. Muscle Nerve 45: 55–59, 2012Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/89462/1/22232_ftp.pd

    Inhibition of Myostatin Signaling through Notch Activation following Acute Resistance Exercise

    Get PDF
    Myostatin is a TGFb family member and negative regulator of muscle size. Due to the complexity of the molecular pathway between myostatin mRNA/protein and changes in transcription, it has been difficult to understand whether myostatin plays a role in resistance exercise-induced skeletal muscle hypertrophy. To circumvent this problem, we determined the expression of a unique myostatin target gene, Mighty, following resistance exercise. Mighty mRNA increased by 6 h (82.9624.21%) and remained high out to 48 h (56.5619.67%) after resistance exercise. Further examination of the soleus, plantaris and tibialis anterior muscles showed that the change in Mighty mRNA at 6 h correlated with the increase in muscle size associated with this protocol (R2 = 0.9996). The increase in Mighty mRNA occurred both independent of Smad2 phosphorylation and in spite of an increase in myostatin mRNA (341.86147.14% at 3 h). The myostatin inhibitor SKI remained unchanged. However, activated Notch, another potential inhibitor of TGFb signaling, increased immediately following resistance exercise (83611.2%) and stayed elevated out to 6 h (78616.6%). Electroportion of the Notch intracellular domain into the tibialis anterior resulted in an increase in Mighty mRNA (63613.4%) that was equivalent to the canonical Notch target HES-1 (94.467.32%). These data suggest that acute resistance exercise decreases myostatin signaling through the activation of the TGFb inhibitor Notch resulting in a decrease in myostatin transcriptional activity that correlates well with muscle hypertrophy

    Engaging Engineering Teams Through Moral Imagination: A Bottom-Up Approach for Responsible Innovation and Ethical Culture Change in Technology Companies

    Get PDF
    We propose a ‘Moral Imagination’ methodology to facilitate a culture of responsible innovation for engineering and product teams in technology companies. Our approach has been operationalized over the past two years at Google, where we have conducted over 50 workshops with teams from across the organization. We argue that our approach is a crucial complement to existing formal and informal initiatives for fostering a culture of ethical awareness, deliberation, and decision-making in technology design such as company principles, ethics and privacy review procedures, and compliance controls. We characterize some distinctive benefits of our methodology for the technology sector in particular

    Newcastle disease virus (NDV) expressing the spike protein of SARS-CoV-2 as a live virus vaccine candidate

    Get PDF
    Background: Due to the lack of protective immunity of humans towards the newly emerged SARS-CoV-2, this virus has caused a massive pandemic across the world resulting in hundreds of thousands of deaths. Thus, a vaccine is urgently needed to contain the spread of the virus. Methods: Here, we describe Newcastle disease virus (NDV) vector vaccines expressing the spike protein of SARS-CoV-2 in its wild type format or a membrane-anchored format lacking the polybasic cleavage site. All described NDV vector vaccines grow to high titers in embryonated chicken eggs. In a proof of principle mouse study, the immunogenicity and protective efficacy of these NDV-based vaccines were investigated. Findings: We report that the NDV vector vaccines elicit high levels of antibodies that are neutralizing when the vaccine is given intramuscularly in mice. Importantly, these COVID-19 vaccine candidates protect mice from a mouse-adapted SARS-CoV-2 challenge with no detectable viral titer and viral antigen in the lungs. Interpretation: The results suggested that the NDV vector expressing either the wild type S or membrane-anchored S without the polybasic cleavage site could be used as live vector vaccine against SARS-CoV-2. Funding: This work is supported by an NIAID funded Center of Excellence for Influenza Research and Surveillance (CEIRS) contract, the Collaborative Influenza Vaccine Innovation Centers (CIVIC) contract, philanthropic donations and NIH grants

    The Hippo pathway member Yap plays a key role in influencing fate decisions in muscle satellite cells

    Get PDF
    Satellite cells are the resident stem cells of skeletal muscle. Mitotically quiescent in mature muscle, they can be activated to proliferate and generate myoblasts to supply further myonuclei to hypertrophying or regenerating muscle fibres, or self-renew to maintain the resident stem cell pool. Here, we identify the transcriptional co-factor Yap as a novel regulator of satellite cell fate decisions. Yap expression increases during satellite cell activation and Yap remains highly expressed until after the differentiation versus self-renewal decision is made. Constitutive expression of Yap maintains Pax7+ and MyoD+ satellite cells and satellite cell-derived myoblasts, promotes proliferation but prevents differentiation. In contrast, Yap knockdown reduces the proliferation of satellite cell-derived myoblasts by \u3c40%. Consistent with the cellular phenotype, microarrays show that Yap increases expression of genes associated with Yap inhibition, the cell cycle, ribosome biogenesis and that it represses several genes associated with angiotensin signalling. We also identify known regulators of satellite cell function such as BMP4, CD34 and Myf6 (Mrf4) as genes whose expression is dependent on Yap activity. Finally, we confirm in myoblasts that Yap binds to Tead transcription factors and co-activates MCAT elements which are enriched in the proximal promoters of Yap-responsive genes
    corecore