45 research outputs found

    Two-layer viscous instability in a rotating couette device

    Get PDF
    A novel experiment to study the interfacial shear instability between two liquids is described. Density-matched immiscible liquids are confined between concentric cylinders such that the interface is parallel to the cylinder walls. Interfacial waves that develop because of viscosity differences between the shearing fluids are studied as a function of rotation rate and depth ratio using optical techniques. Conditions neutral stability and the most unstable wavenumber agree reasonably well with predictions from linear stability analysis of the Navier-Stokes equations. Illumination using laser sheets allows precise measurement of the interface shape. Future experiments will verify the correctness of weakly nonlinear theories that describe energy transfer and saturation of wave growth by nonlinear effects. Measurements of solitary wave shapes, that occur far above neutral stability, will be compared to similar measurements for systems that have gravity as an important force to determine how gravity effects large disturbances. These results will be used to interpret slug and annular flow data that have been obtained in other mu g studies

    Experimental and Modeling Improvements to a Co-Fluid Cycle Utilizing Ionic Liquids and Carbon Dioxide

    Get PDF
    Carbon dioxide is undergoing a renaissance as an alternative to synthetic refrigerants due to its environmental advantages in addition to a high density and excellent transport properties. A weakness of carbon dioxide is having a critical point which occurs at a lower temperature and higher pressure than most other fluids used as refrigerants. This combination leads to high operating pressures, especially on the heat rejection side of the thermodynamic cycle. Ionic liquids, which are salts which remain in their liquid phase at room temperatures, have been shown to strongly absorb carbon dioxide. Due to recent advances in ionic liquids, the cation and anion groups are able to be formulated to tailor a variety of fluid properties including liquid-vapor equilibrium characteristics. By selecting appropriate ionic liquids, it is possible to reduce the operating pressure of an air-conditioning system utilizing carbon dioxide to be in the range of conventional refrigerants. Not only are ionic liquids able to physically absorb volatile refrigerants as in other co-fluid cycles, but ionic liquids also offer the possibility of chemical absorption thereby giving the opportunity for greater enthalpy changes. Conceptually, the ionic co-fluid cycle is similar to a traditional vapor compression cycle. In the high pressure heat exchanger, heat is rejected to lower the enthalpy and to absorb carbon dioxide into the ionic liquid. The enthalpy is further reduced in an internal heat exchanger before the high pressure liquid is passed through a valve to decrease the pressure which causes the fluid mixture to cool. Heat is absorbed by the mixture from the environment, thus boiling additional carbon dioxide. After passing through an internal heat exchanger, the fluid is mechanically compressed and the cycle is repeated. System modeling work was utilized to identify important thermodynamic characteristics for achieving good performance. These characteristics included heats of mixing, solubility, entropy of mixing, and viscosity. Using experimentally and numerically determined IL-CO2 mixture properties, system models were able to predicatively select anion and cation pairs for optimizing performance. The ionic liquids selected from the modeling exercises were subsequently synthesized for demonstration in a laboratory. An air conditioning system was built from components designed for use with conventional refrigerants. The system was installed in a facility which was instrumented to measure air and refrigerant pressures and temperatures. Air flow rate and temperature information allowed the cooling capacity to be measured. The power consumption of the pump and compressor used to circulate the working fluids was measured so that COP could be determined. Modeling results were validated with experimental findings. The emphasis of modeling and experiments was to determine the effect of operational parameters on system performance. The loading of ionic liquid and carbon dioxide, along with valve opening and compressor speed, was found to dramatically alter the operating pressures. The difference and ratio between high and low side pressures directly affected the specific cooling capacity and COP, respectively. While the model had strong agreement with the experimental results, non-idealities to be incorporated in more sophisticated models are identified

    Fundamental Processes of Atomization in Fluid-Fluid Flows

    Get PDF
    This paper discusses our proposed experimental and theoretical study of atomization in gas-liquid and liquid-liquid flows. While atomization is a very important process in these flows, the fundamental mechanism is not understood and there is no predictive theory. Previous photographic studies in (turbulent) gas-liquid flows have shown that liquid is atomized when it is removed by the gas flow from the crest of large solitary or roll waves. Our preliminary studies in liquid-liquid laminar flows exhibit the same mechanism. The two-liquid system is easier to study than gas-liquid systems because the time scales are much slower, the length scales much larger, and there is no turbulence. The proposed work is intended to obtain information about the mechanism of formation, rate of occurrence and the evolving shape of solitary waves; and quantitative aspects of the detailed events of the liquid removal process that can be used to verify a general predictive theory

    How can diagnostic assessment programs be implemented to enhance inter-professional collaborative care for cancer?

    Get PDF
    BackgroundInter-professional collaborative care (ICC) for cancer leads to multiple system, organizational, professional, and patient benefits, but is limited by numerous challenges. Empirical research on interventions that promote or enable ICC is sparse so guidance on how to achieve ICC is lacking. Research shows that ICC for diagnosis could be improved. Diagnostic assessment programs (DAPs) appear to be a promising model for enabling ICC. The purpose of this study was to explore how DAP structure and function enable ICC, and whether that may be associated with organizational and clinical outcomes.MethodsA case study approach will be used to explore ICC among eight DAPs that vary by type of cancer (lung, breast), academic status, and geographic region. To describe DAP function and outcomes, and gather information that will enable costing, recommendations expressed in DAP standards and clinical guidelines will be assessed through retrospective observational study. Data will be acquired from databases maintained by participating DAPs and the provincial cancer agency, and confirmed by and supplemented with review of medical records. We will conduct a pilot study to explore the feasibility of estimating the incremental cost-effectiveness ratio using person-level data from medical records and other sources. Interviews will be conducted with health professionals, staff, and referring physicians from each DAP to learn about barriers and facilitators of ICC. Qualitative methods based on a grounded approach will be used to guide sampling, data collection and analysis.DiscussionFindings may reveal opportunities for unique structures, interventions or tools that enable ICC that could be developed, implemented, and evaluated through future research. This information will serve as a formative needs assessment to identify the nature of ongoing or required improvements, which can be directly used by our decision maker collaborators, and as a framework by policy makers, cancer system managers, and DAP managers elsewhere to strategically plan for and implement diagnostic cancer services

    Probing Cation Antisite Disorder in Gd2Ti2O7 Pyrochlore by Site-specific NEXAFS and XPS

    Full text link
    Disorder in Gd2Ti2O7 is investigated by near-edge x-ray-absorption fine structure (NEXAFS) and x-ray photoelectron spectroscopy (XPS). NEXAFS shows Ti4+ ions occupy octahedral sites with a tetragonal distortion induced by vacant oxygen sites. O 1s XPS spectra obtained with a charge neutralization system from Gd2Ti2O7(100) and the Gd2Ti2O7 pyrochlore used by Chen et al. [Phys. Rev. Lett. 88, 105901 (2002)], both yielded a single peak, unlike the previous result on the latter that found two peaks. The current results give no evidence for an anisotropic distribution of Ti and O. The extra features reported in the aforementioned communication resulted from charging effects and incomplete surface cleaning. Thus, a result confirming the direct observation of simultaneous cation-anion antisite disordering and lending credence to the split vacancy model has been clarified

    Moderate to severe gambling problems and traumatic brain injury: A population-based study

    Get PDF
    Traumatic brain injury (TBI) is a common injury characterized by a change in brain function after an external blow to the head and is associated with substance abuse, psychological distress, risk-taking, and impulsivity. Convenience and clinical samples have also linked TBI to problem gambling, but have not ruled out confounding variables such as hazardous drinking and psychological distress. This study examines the relationship between TBI and moderate to severe problem gambling in a general population probability sample controlling for hazardous drinking and psychological distress. The data were obtained from a 2015–2016 cross-sectional general population telephone survey of adults ages 18+from Ontario, Canada (N = 3809). Logistic regression was used to estimate the association as adjusted odds ratios (AOR). Moderate to severe problem gambling was independently associated with a history of TBI after adjusting for potential confounders (AOR: 2.80), and had a statistically significant relationship with psychological distress (AOR = 2.74), hazardous drinking (AOR = 2.69), and lower educational levels (AOR = 0.37). This study provides further data to suggest a link between TBI and moderate to severe problem gambling; however, more research is needed to determine if there is a causal relationship or the potential implications for prevention and treatment

    Moderate to severe gambling problems and traumatic brain injury: A population-based study

    Get PDF
    Traumatic brain injury (TBI) is a common injury characterized by a change in brain function after an external blow to the head and is associated with substance abuse, psychological distress, risk-taking, and impulsivity. Convenience and clinical samples have also linked TBI to problem gambling, but have not ruled out confounding variables such as hazardous drinking and psychological distress. This study examines the relationship between TBI and moderate to severe problem gambling in a general population probability sample controlling for hazardous drinking and psychological distress. The data were obtained from a 2015–2016 cross-sectional general population telephone survey of adults ages 18+from Ontario, Canada (N = 3809). Logistic regression was used to estimate the association as adjusted odds ratios (AOR). Moderate to severe problem gambling was independently associated with a history of TBI after adjusting for potential confounders (AOR: 2.80), and had a statistically significant relationship with psychological distress (AOR = 2.74), hazardous drinking (AOR = 2.69), and lower educational levels (AOR = 0.37). This study provides further data to suggest a link between TBI and moderate to severe problem gambling; however, more research is needed to determine if there is a causal relationship or the potential implications for prevention and treatment

    Onset of the aerobic nitrogen cycle during the Great Oxidation Event

    Get PDF
    The rise of oxygen on the early Earth (about 2.4 billion years ago)1 caused a reorganization of marine nutrient cycles2, 3, including that of nitrogen, which is important for controlling global primary productivity. However, current geochemical records4 lack the temporal resolution to address the nature and timing of the biogeochemical response to oxygenation directly. Here we couple records of ocean redox chemistry with nitrogen isotope (15N/14N) values from approximately 2.31-billion-year-old shales5 of the Rooihoogte and Timeball Hill formations in South Africa, deposited during the early stages of the first rise in atmospheric oxygen on the Earth (the Great Oxidation Event)6. Our data fill a gap of about 400 million years in the temporal 15N/14N record4 and provide evidence for the emergence of a pervasive aerobic marine nitrogen cycle. The interpretation of our nitrogen isotope data in the context of iron speciation and carbon isotope data suggests biogeochemical cycling across a dynamic redox boundary, with primary productivity fuelled by chemoautotrophic production and a nitrogen cycle dominated by nitrogen loss processes using newly available marine oxidants. This chemostratigraphic trend constrains the onset of widespread nitrate availability associated with ocean oxygenation. The rise of marine nitrate could have allowed for the rapid diversification and proliferation of nitrate-using cyanobacteria and, potentially, eukaryotic phytoplankton

    Molecular Characterization of NRXN1 Deletions from 19,263 Clinical Microarray Cases Identifies Exons Important for Neurodevelopmental Disease Expression

    Get PDF
    PURPOSE: The purpose of the current study was to assess the penetrance of NRXN1 deletions. METHODS: We compared the prevalence and genomic extent of NRXN1 deletions identified among 19,263 clinically referred cases to that of 15,264 controls. The burden of additional clinically relevant copy-number variations (CNVs) was used as a proxy to estimate the relative penetrance of NRXN1 deletions. RESULTS: We identified 41 (0.21%) previously unreported exonic NRXN1 deletions ascertained for developmental delay/intellectual disability that were significantly greater than in controls (odds ratio (OR) = 8.14; 95% confidence interval (CI): 2.91-22.72; P \u3c 0.0001). Ten (22.7%) of these had a second clinically relevant CNV. Subjects with a deletion near the 3\u27 end of NRXN1 were significantly more likely to have a second rare CNV than subjects with a 5\u27 NRXN1 deletion (OR = 7.47; 95% CI: 2.36-23.61; P = 0.0006). The prevalence of intronic NRXN1 deletions was not statistically different between cases and controls (P = 0.618). The majority (63.2%) of intronic NRXN1 deletion cases had a second rare CNV at a prevalence twice as high as that for exonic NRXN1 deletion cases (P = 0.0035). CONCLUSIONS: The results support the importance of exons near the 5\u27 end of NRXN1 in the expression of neurodevelopmental disorders. Intronic NRXN1 deletions do not appear to substantially increase the risk for clinical phenotypes.Genet Med 19 1, 53-61

    HabEx Baseline Telescope: Design & Performance Analysis

    Get PDF
    HabEx is one of four missions under study for 2020 Astrophysics Decadal Survey. It will directly image and spectroscopically characterize planetary systems in the habitable zone of Sun-like stars. Additionally, HabEx will perform a broad range of general astrophysics science enabled by 115 to 2500 nm spectral range and 3 x 3 arc-minute FOV
    corecore