581 research outputs found

    Observing Supernova 1987A with the Refurbished Hubble Space Telescope

    Get PDF
    Observations with the Hubble Space Telescope (HST), conducted since 1990, now offer an unprecedented glimpse into fast astrophysical shocks in the young remnant of supernova 1987A. Comparing observations taken in 2010 using the refurbished instruments on HST with data taken in 2004, just before the Space Telescope Imaging Spectrograph failed, we find that the Ly-a and H-a lines from shock emission continue to brighten, while their maximum velocities continue to decrease. We observe broad blueshifted Ly-a, which we attribute to resonant scattering of photons emitted from hotspots on the equatorial ring. We also detect NV~\lambda\lambda 1239,1243 A line emission, but only to the red of Ly-A. The profiles of the NV lines differ markedly from that of H-a, suggesting that the N^{4+} ions are scattered and accelerated by turbulent electromagnetic fields that isotropize the ions in the collisionless shock.Comment: Science, accepted. Science Express, 02 Sept 2010. 5 figures. Supporting online material can be found at http://www.sciencemag.org/cgi/content/full/sci;science.1192134/DC

    Understanding the effect of curvature on the magnetization reversal of three-dimensional nanohelices

    Full text link
    Comprehending the interaction between geometry and magnetism in three-dimensional (3D) nanostructures is of importance to understand the fundamental physics of domain wall (DW) formation and pinning. Here, we use focused electron beam-induced deposition to fabricate magnetic nanohelices with increasing helical curvature with height. Using electron tomography and Lorentz transmission electron microscopy, we reconstruct the 3D structure and magnetization of the nanohelices. The surface curvature, helical curvature and torsion of the nanohelices are then quantified from the tomographic reconstructions. Furthermore, by using the experimental 3D reconstructions as inputs for micromagnetic simulations we can reveal the influence of surface and helical curvature on the magnetic reversal mechanism. Hence, we can directly correlate the magnetic behavior of a 3D nanohelix to its experimental structure. These results demonstrate how control of geometry in nanohelices can be utilized in the stabilization of DWs and control of the response of the nanostructure to applied magnetic fields

    Spatial Structure and Collisionless Electron Heating in Balmer-dominated Shocks

    Full text link
    Balmer-dominated shocks in supernova remnants (SNRs) produce strong hydrogen lines with a two-component profile composed of a narrow contribution from cold upstream hydrogen atoms, and a broad contribution from hydrogen atoms that have undergone charge transfer reactions with hot protons. Observations of emission lines from edge-wise shocks in SNRs can constrain the gas velocity and collisionless electron heating at the shock front. Downstream hydrogen atoms engage in charge transfer, excitation and ionization reactions, defining an interaction region called the shock transition zone. The properties of hot hydrogen atoms produced by charge transfers (called broad neutrals) are critical for accurately calculating the structure and radiation from the shock transition zone. This paper is the third in a series describing the kinetic, fluid and emission properties of Balmer-dominated shocks, and is the first to properly treat the effect of broad neutral kinetics on shock transition zone structure. We use our models to extract shock parameters from observations of Balmer-dominated SNRs. We find that inferred shock velocities and electron temperatures are lower than those of previous calculations by <10% for v_s<1500 km/s, and by 10-30% for v_s>1500 km/s. This effect is primarily due to the fact that excitation by proton collisions and charge transfer to excited levels favor the high speed part of the neutral hydrogen velocity distribution. Our results have a strong dependence on the ratio of electron to proton temperatures, \beta=T_e/T_p, which allows us to construct a relation \beta(v_s) between the temperature ratio and shock velocity. We compare our calculations to previous results by Ghavamian et al. (2007).Comment: 41 pages, 15 figures, 2 tables. Improved comparison to previous results, added discussion, and incorporated referee's suggestions. Submitted to Ap

    Optimization of Cutaneous Electrically Mediated Plasmid DNA Delivery Using Novel Electrode

    Get PDF
    The easy accessibility of skin makes it an excellent target for gene transfer protocols. To take advantage of skin as a target for gene transfer, it is important to establish an efficient and reproducible delivery system. Electroporation is an established technique for enhancing plasmid delivery to many tissues in vivo. A critical component of this technique is the electrode configuration. Electroporation parameters were optimized for transgene expression with minimal tissue damage with a novel electrode. The highest transgene expression and efficiency of individual cell transformation with minimal damage was produced with eight 150 ms pulses at field strength of 100 V/cm. This electrode design offers the potential for easier and more reproducible electrically mediated cutaneous plasmid delivery than the simple electrodes currently commercially available. This electrode can be a valuable tool in determining the applicability of electrically mediated cutaneous gene transfer

    Three-dimensional distribution of ejecta in Supernova 1987A at 10 000 days

    Get PDF
    Due to its proximity, SN 1987A offers a unique opportunity to directly observe the geometry of a stellar explosion as it unfolds. Here we present spectral and imaging observations of SN 1987A obtained ~10,000 days after the explosion with HST/STIS and VLT/SINFONI at optical and near-infrared wavelengths. These observations allow us to produce the most detailed 3D map of H-alpha to date, the first 3D maps for [Ca II] \lambda \lambda 7292, 7324, [O I] \lambda \lambda 6300, 6364 and Mg II \lambda \lambda 9218, 9244, as well as new maps for [Si I]+[Fe II] 1.644 \mu m and He I 2.058 \mu m. A comparison with previous observations shows that the [Si I]+[Fe II] flux and morphology have not changed significantly during the past ten years, providing evidence that it is powered by 44Ti. The time-evolution of H-alpha shows that it is predominantly powered by X-rays from the ring, in agreement with previous findings. All lines that have sufficient signal show a similar large-scale 3D structure, with a north-south asymmetry that resembles a broken dipole. This structure correlates with early observations of asymmetries, showing that there is a global asymmetry that extends from the inner core to the outer envelope. On smaller scales, the two brightest lines, H-alpha and [Si I]+[Fe II] 1.644 \mu m, show substructures at the level of ~ 200 - 1000 km/s and clear differences in their 3D geometries. We discuss these results in the context of explosion models and the properties of dust in the ejecta.Comment: Accepted for publication in Ap

    Dust Production and Particle Acceleration in Supernova 1987A Revealed with ALMA

    Get PDF
    Supernova (SN) explosions are crucial engines driving the evolution of galaxies by shock heating gas, increasing the metallicity, creating dust, and accelerating energetic particles. In 2012 we used the Atacama Large Millimeter/Submillimeter Array to observe SN 1987A, one of the best-observed supernovae since the invention of the telescope. We present spatially resolved images at 450um, 870um, 1.4mm, and 2.8mm, an important transition wavelength range. Longer wavelength emission is dominated by synchrotron radiation from shock-accelerated particles, shorter wavelengths by emission from the largest mass of dust measured in a supernova remnant (>0.2Msun). For the first time we show unambiguously that this dust has formed in the inner ejecta (the cold remnants of the exploded star's core). The dust emission is concentrated to the center of the remnant, so the dust has not yet been affected by the shocks. If a significant fraction survives, and if SN 1987A is typical, supernovae are important cosmological dust producers.Comment: ApJL accepte

    Preliminary Spectral Analysis of the Type II Supernova 1999em

    Get PDF
    We have calculated fast direct spectral model fits to two early-time spectra of the Type-II plateau SN 1999em, using the SYNOW synthetic spectrum code. The first is an extremely early blue optical spectrum and the second a combined HST and optical spectrum obtained one week later. Spectroscopically this supernova appears to be a normal Type II and these fits are in excellent agreement with the observed spectra. Our direct analysis suggests the presence of enhanced nitrogen. We have further studied these spectra with the full NLTE general model atmosphere code PHOENIX. While we do not find confirmation for enhanced nitrogen (nor do we rule it out), we do require enhanced helium. An even more intriguing possible line identification is complicated Balmer and He I lines, which we show falls naturally out of the detailed calculations with a shallow density gradient. We also show that very early spectra such as those presented here combined with sophisticated spectral modeling allows an independent estimate of the total reddening to the supernova, since when the spectrum is very blue, dereddening leads to changes in the blue flux that cannot be reproduced by altering the ``temperature'' of the emitted radiation. These results are extremely encouraging since they imply that detailed modeling of early spectra can shed light on both the abundances and total extinction of SNe II, the latter improving their utility and reliability as distance indicators.Comment: to appear in ApJ, 2000, 54

    The Axially Symmetric Ejecta of Supernova 1987A

    Get PDF
    Extensive early observations proved that the ejecta of supernova 1987A (SN 1987A) are aspherical. Fifteen years after the supernova explosion, the Hubble Space Telescope has resolved the rapidly expanding ejecta. The late-time images and spectroscopy provide a geometrical picture that is consistent with early observations and suggests a highly structured, axially symmetric geometry. We present here a new synthesis of the old and new data. We show that the Bochum event, presumably a clump of 56^{56}Ni, and the late-time image, the locus of excitation by 44^{44}Ti, are most naturally accounted for by sharing a common position angle of about 14\degree, the same as the mystery spot and early speckle data on the ejecta, and that they are both oriented along the axis of the inner circumstellar ring at 45\degree to the plane of the sky. We also demonstrate that the polarization represents a prolate geometry with the same position angle and axis as the early speckle data and the late-time image and hence that the geometry has been fixed in time and throughout the ejecta. The Bochum event and the Doppler kinematics of the [Ca II]/[O II] emission in spatially resolved HST spectra of the ejecta can be consistently integrated into this geometry. The radioactive clump is deduced to fall approximately along the axis of the inner circumstellar ring and therefore to be redshifted in the North whereas the [Ca II]/[O II] 7300 \AA emission is redshifted in the South. We present a jet-induced model for the explosion and argue that such a model can account for many of the observed asymmetries. In the jet models, the oxygen and calcium are not expected to be distributed along the jet, but primarily in an expanding torus that shares the plane and northern blue shift of the inner circumstellar ring.Comment: To Appear in Ap

    An adjustable law of motion for relativistic spherical shells

    Full text link
    A classical and a relativistic law of motion for an advancing shell are deduced applying the thin layer approximation. A new parameter connected with the quantity of absorbed matter in the expansion is introduced; this allows of matching theory and observation.Comment: 15 pages, 10 figures and article in press; Central European Journal of Physics 201

    Photoionized Lines in the X-ray Spectra of SMC X-1

    Full text link
    We present a detailed spectral analysis of Chandra/ACIS-S CC mode observations of the massive X-ray binary system SMC X-1. The system was observed during both the high and low X-ray states of the roughly 60-day superorbital period. The continuum spectra during both states are well represented by a power law with photon index α\alpha=0.9 and a blackbody of kT = 0.15keV. The high state spectra are dominated by the continuum and independent of orbital phase whereas the low state spectra show a strong orbital dependence as well as line emission from O, Ne, Mg, Fe, and Si. This is consistent with the states attributed to disk precession: during the high state X-ray emission is dominated by the compact source which is abrubtly eclipsed and during the low state the compact object is hidden by the disk and a larger, less luminous scattering region is responsible for the X-ray emission. A prominent Ne IX feature places a stringent limit (Log ξ\xi = 2.0-2.5) on the ionization parameter which constrains the wind dynamics of the system. The Fe line fluxes are related linearly to the blackbody fluxes indicating that both originate in the same region or are excited by the same mechanism. There is evidence for structure in the Fe-line that cannot be fully resolved by the current observations. The pulse period measured during our observations, 0.7057147±\pm0.00000027s shows that the uninterrupted spin-up trend of SMC X-1 continues. We discuss the implications of our results for models of SMC X-1.Comment: 31 pages including 10 figures. Accepted for publication in Ap
    corecore