20 research outputs found

    Genetic Relationships Between Two Rare Plant Species, \u3ci\u3eAliciella caespitosa\u3c/i\u3e and \u3ci\u3eA. tenuis\u3c/i\u3e, and Their Putative Progenitor, \u3ci\u3eA. subnuda\u3c/i\u3e

    Get PDF
    Isolated populations have potential to become new species that should have less genetic variation than their ancestors. Small populations are more likely to lose genetic variation, which is, thus, expected to be greater in ancestors. Aliciella caespitosa and A. tenuis, two endemic species, may be derived from small populations of A. subnuda, a widespread species. Chloroplast DNA sequences were used to test this hypothesis. Allozyme data were used to compare genetic variation and numbers of alleles. Chloroplast data do not support the proposed relationships between A. subnuda and the other two species. Allozyme data were not more variable in A. subnuda. The data suggest that A. tenuis is derived from A. caespitosa, although the former did not show lower allozyme diversity. I detected fewer alleles in A. tenuis. These data suggest that the original population of A. tenuis was not small enough to lose genetic variation relative to its progenitor

    Genomic Organization, Sequence Divergence, and Recombination of Feline Immunodeficiency Virus from Lions in the Wild

    Get PDF
    Background Feline immunodeficiency virus (FIV) naturally infects multiple species of cat and is related to human immunodeficiency virus in humans. FIV infection causes AIDS-like disease and mortality in the domestic cat (Felis catus) and serves as a natural model for HIV infection in humans. In African lions (Panthera leo) and other exotic felid species, disease etiology introduced by FIV infection are less clear, but recent studies indicate that FIV causes moderate to severe CD4 depletion. Results In this study, comparative genomic methods are used to evaluate the full proviral genome of two geographically distinct FIV subtypes isolated from free-ranging lions. Genome organization of FIVPle subtype B (9891 bp) from lions in the Serengeti National Park in Tanzania and FIVPle subtype E (9899 bp) isolated from lions in the Okavango Delta in Botswana, both resemble FIV genome sequence from puma, Pallas cat and domestic cat across 5\u27 LTR, gag, pol, vif, orfA, env, rev and 3\u27LTR regions. Comparative analyses of available full-length FIV consisting of subtypes A, B and C from FIVFca , Pallas cat FIVOma and two puma FIVPco subtypes A and B recapitulate the species-specific monophyly of FIV marked by high levels of genetic diversity both within and between species. Across all FIVPle gene regions except env, lion subtypes B and E are monophyletic, and marginally more similar to Pallas cat FIVOma than to other FIV. Sequence analyses indicate the SU and TM regions of env vary substantially between subtypes, with FIV Ple subtype E more related to domestic cat FIVFca than to FIVPle subtype B and FIVOma likely reflecting recombination between strains in the wild. Conclusion This study demonstrates the necessity of whole-genome analysis to complement population/gene-based studies, which are of limited utility in uncovering complex events such as recombination that may lead to functional differences in virulence and pathogenicity. These full-length lion lentiviruses are integral to the advancement of comparative genomics of human pathogens, as well as emerging disease in wild populations of endangered species

    A secondary mechanism of action for triazole antifungals in Aspergillus fumigatus mediated by hmg1

    Get PDF
    Triazole antifungals function as ergosterol biosynthesis inhibitors and are frontline therapy for invasive fungal infections, such as invasive aspergillosis. The primary mechanism of action of triazoles is through the specific inhibition of a cytochrome P450 14-α-sterol demethylase enzyme, Cyp51A/B, resulting in depletion of cellular ergosterol. Here, we uncover a clinically relevant secondary mechanism of action for triazoles within the ergosterol biosynthesis pathway. We provide evidence that triazole-mediated inhibition of Cyp51A/B activity generates sterol intermediate perturbations that are likely decoded by the sterol sensing functions of HMG-CoA reductase and Insulin-Induced Gene orthologs as increased pathway activity. This, in turn, results in negative feedback regulation of HMG-CoA reductase, the rate-limiting step of sterol biosynthesis. We also provide evidence that HMG-CoA reductase sterol sensing domain mutations previously identified as generating resistance in clinical isolates of Aspergillus fumigatus partially disrupt this triazole-induced feedback. Therefore, our data point to a secondary mechanism of action for the triazoles: induction of HMG-CoA reductase negative feedback for downregulation of ergosterol biosynthesis pathway activity. Abrogation of this feedback through acquired mutations in the HMG-CoA reductase sterol sensing domain diminishes triazole antifungal activity against fungal pathogens and underpins HMG-CoA reductase-mediated resistance

    A multimodal cell census and atlas of the mammalian primary motor cortex

    Get PDF
    ABSTRACT We report the generation of a multimodal cell census and atlas of the mammalian primary motor cortex (MOp or M1) as the initial product of the BRAIN Initiative Cell Census Network (BICCN). This was achieved by coordinated large-scale analyses of single-cell transcriptomes, chromatin accessibility, DNA methylomes, spatially resolved single-cell transcriptomes, morphological and electrophysiological properties, and cellular resolution input-output mapping, integrated through cross-modal computational analysis. Together, our results advance the collective knowledge and understanding of brain cell type organization: First, our study reveals a unified molecular genetic landscape of cortical cell types that congruently integrates their transcriptome, open chromatin and DNA methylation maps. Second, cross-species analysis achieves a unified taxonomy of transcriptomic types and their hierarchical organization that are conserved from mouse to marmoset and human. Third, cross-modal analysis provides compelling evidence for the epigenomic, transcriptomic, and gene regulatory basis of neuronal phenotypes such as their physiological and anatomical properties, demonstrating the biological validity and genomic underpinning of neuron types and subtypes. Fourth, in situ single-cell transcriptomics provides a spatially-resolved cell type atlas of the motor cortex. Fifth, integrated transcriptomic, epigenomic and anatomical analyses reveal the correspondence between neural circuits and transcriptomic cell types. We further present an extensive genetic toolset for targeting and fate mapping glutamatergic projection neuron types toward linking their developmental trajectory to their circuit function. Together, our results establish a unified and mechanistic framework of neuronal cell type organization that integrates multi-layered molecular genetic and spatial information with multi-faceted phenotypic properties

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    How migratory thrushes conquered northern North America: a comparative phylogeography approach

    Get PDF
    Five species of migratory thrushes (Turdidae) occupy a transcontinental distribution across northern North America. They have largely overlapping breeding ranges, relatively similar ecological niches, and mutualistic relationships with northern woodland communities as insectivores and seed-dispersing frugivores. As an assemblage of ecologically similar species, and given other vertebrate studies, we predicted a shared pattern of genetic divergence among these species between their eastern and western populations, and also that the timing of the coalescent events might be similar and coincident with historical glacial events. To determine how these five lineages effectively established transcontinental distributions, we used mitochondrial cytochrome b sequences to assess genetic structure and lineage coalescence from populations on each side of the continent. Two general patterns occur. Hermit and Swainson’s thrushes (Catharus guttatus and C. ustulatus) have relatively deep divergences between eastern and western phylogroups, probably reflecting shared historic vicariance. The Veery (C. fuscescens), Gray-cheeked Thrush (C. minimus), and American Robin (Turdus migratorius) have relatively shallow divergences between eastern and western populations. However, coalescent and approximate Bayesian computational analyses indicated that among all species as many as five transcontinental divergence events occurred. Divergence within both Hermit and Swainson’s thrushes resembled the divergence between Gray-cheeked Thrushes and Veeries and probably occurred during a similar time period. Despite these species’ ecological similarities, the assemblage exhibits heterogeneity at the species level in how they came to occupy transcontinental northern North America but two general continental patterns at an among-species organizational level, likely related to lineage age

    Phylogenetic reconstruction based on nucleotide sequence of fulllength proviral FIV including and separate analysis of

    No full text
    A. Phylogenetic tree of concatenated combined data of coding genes , , and . B. Phylogenetic tree of sequences only. Shown is the maximum likelihood tree (ML) identical to tree topology using maximum parisimony (MP) and minimum evolution (ME) for each gene region. See methods and Additional file for specific parameters as implemented in PAUP ver 4.10b. All nodes supported by 100% bootstrap proportions in ME, MP and ML analyses except for relative positions of FIVsubtypes which were supported by bootstraps >50% but less than 100% within the FIVclade.<p><b>Copyright information:</b></p><p>Taken from "Genomic organization, sequence divergence, and recombination of feline immunodeficiency virus from lions in the wild"</p><p>http://www.biomedcentral.com/1471-2164/9/66</p><p>BMC Genomics 2008;9():66-66.</p><p>Published online 5 Feb 2008</p><p>PMCID:PMC2270836.</p><p></p

    Phylogenetic reconstruction based on nucleotide sequence of LTR and coding genes from full-length FIV nucleotide sequences excluding

    No full text
    (A-E) Shown are the maximum likelihood trees (ML) which are identical to tree topologies using maximum parisimony (MP) and minimum evolution (ME) for each gene region. See methods and Additional file for specific parameters as implemented in PAUP ver 4.10b. (E) phylogeny does not include FIVsubtype A due to lack of sufficient homology for proper gene identification. (F) Phylogenetic tree of concatenated combined data of coding genes , , and . All nodes supported by 100% bootstrap proportions in ME, MP and ML analyses except for relative positions of FIVsubtypes which were supported by bootstraps >50% but less than 100% within the FIVclade.<p><b>Copyright information:</b></p><p>Taken from "Genomic organization, sequence divergence, and recombination of feline immunodeficiency virus from lions in the wild"</p><p>http://www.biomedcentral.com/1471-2164/9/66</p><p>BMC Genomics 2008;9():66-66.</p><p>Published online 5 Feb 2008</p><p>PMCID:PMC2270836.</p><p></p
    corecore