27 research outputs found
The Residual Stress Relaxation Behavior of Weldments During Cyclic Loading
Accurate measurement of residual stress is necessary to obtain reliable predictions of fatigue lifetime and enable estimation of time-to-facture for any given stress level. In this article, relaxation of welding residual stresses as a function of cyclic loading was documented on three common steels: AISI 1008, ASTM A572, and AISI 4142. Welded specimens were subjected to cyclic bending (R = 0.1) at different applied stresses, and the residual stress relaxation existing near the welds was measured as a function of cycles. The steels exhibited very different stress relaxation behaviors during cyclic loadings, which can be related to the differences in the microstructures of the specimens. A phenomenological model, which treats dislocation motion during cyclic loading as being analogous to creep of dislocations, is proposed for estimation of the residual stress relaxation
Relationship between bone mineral density changes with denosumab treatment and risk reduction for vertebral and nonvertebral fractures.
Dual-energy X-ray absorptiometric bone mineral density (DXA BMD) is a strong predictor of fracture risk in untreated patients. However, previous patient-level studies suggest that BMD changes explain little of the fracture risk reduction observed with osteoporosis treatment. We investigated the relevance of DXA BMD changes as a predictor for fracture risk reduction using data from the FREEDOM trial, which randomly assigned placebo or denosumab 60 mg every 6 months to 7808 women aged 60 to 90 years with a spine or total hip BMD T-score 100%] and 72% [95% CI: 24% - >100%], respectively). Previous patient-level studies may have underestimated the strength of the relationship between BMD change and the effect of treatment on fracture risk or this relationship may be unique to denosumab
Mineralização de carbono e de nitrogênio provenientes de composto de lixo urbano em argissolo Carbon and nitrogen mineralization in an ultisol fertilized with urban waste compost
Estudos da mineralização do C e do N em solos que receberam aplicação de composto de lixo urbano são importantes para avaliar o comportamento desse resÃduo no solo e dar subsÃdios para definir as doses adequadas à s culturas, com vistas em atender à necessidade de N das plantas. Foram realizados dois experimentos em condições de laboratório com o objetivo de avaliar a mineralização de C e de N em um Argissolo textura média adubado com composto de lixo urbano. No primeiro experimento, utilizou-se delineamento inteiramente ao acaso, com cinco tratamentos e três repetições, com os tratamentos constituÃdos de cinco doses de composto de lixo urbano, equivalentes a 0, 30, 60, 90 e 120 t ha-1. No segundo experimento, empregou-se esquema fatorial, com delineamento inteiramente ao acaso e três repetições, combinando as mesmas cinco doses de composto de lixo urbano utilizadas no primeiro experimento e 11 tempos de incubação (0, 7, 14, 28, 42, 56, 70, 84, 98, 112 e 126 dias). Os maiores aumentos de N-NO3- no solo foram obtidos até os 42 dias de incubação, independentemente da dose de composto de lixo aplicada, percebendo-se, a partir dos 70 dias, tendência de estabilização. A fração de mineralização de C-orgânico em C-CO2 menor do que 2 % em 168 dias indica que o composto de lixo urbano é material que contribui para aumentar os estoques de matéria orgânica do solo. Na ausência de adubação nitrogenada complementar, a fração de mineralização de N-orgânico de 12 % em 126 dias evidencia que o composto de lixo urbano apresenta potencial fertilizante de liberação lenta de N para as plantas.<br>Studies about nitrogen and carbon mineralization in soils amended with urban waste compost are important to evaluate the reactions of this waste in soil and to define the best rates for crops. Two experiments were carried out under laboratory conditions to evaluate carbon and nitrogen mineralization in an Ultisol fertilized with urban waste compost. The Ultisol first experiment had a completely randomized design, with five urban waste compost rates of 0, 30, 60, 90, and 120 t ha-1 and three replicates. In the second experiment, N mineralization was evaluated at the same waste compost rates along eleven incubation periods (0, 7, 14, 28, 42, 56, 70, 84, 98, 112, and 126 days), in three replicates. The following results were obtained for a medium texture Ultisol fertilized with urban waste compost: regardless of urban waste compost dose the greatest increase in N-NO3- in the soil was found up to 42 days, stabilizing afterwards; the mineralization rate of organic carbon of less than 2 % in 168 days indicates that urban waste compost contributes to increase soil organic matter. In the absence of other N fertilizers, urban waste compost releases N to plants slowly at a rate of 12 % in 126 days, demonstrating its potential as slow-release nitrogen fertilizer
Safety and Tolerability of Odanacatib Therapy in Postmenopausal Women with Osteoporosis: Results from the Phase III Long-Term Odanacatib Fracture Trial (LOFT)
Bone and mineral researc