2,686 research outputs found

    Ocean Chlorophyll Studies from a U-2 Aircraft Platform

    Get PDF
    Chlorophyll gradient maps of large ocean areas were generated from U-2 ocean color scanner data obtained over test sites in the Pacific and Atlantic Oceans. The delineation of oceanic features using the upward radiant intensity relies on an analysis method which presupposes that radiation backscattered from the atmosphere and ocean surface can be properly modeled using a measurement made at 778 nm. An estimation of the chlorophyll concentration was performed by properly ratioing radiances measured at 472 nm and 548 nm after removing the atmospheric effects. The correlation between the remotely sensed data and in-situ surface chlorophyll measurements was validated in two sets of data. The results show that the correlation between the in-situ measured chlorophyll and the derived quantity is a negative exponential function and the correlation coefficient was calculated to be -0.965

    The influence of lexical selection disruptions on articulation

    No full text
    Interactive models of language production predict that it should be possible to observe long-distance interactions; effects that arise at one level of processing influence multiple subsequent stages of representation and processing. We examine the hypothesis that disruptions arising in nonform-based levels of planning—specifically, lexical selection—should modulate articulatory processing. A novel automatic phonetic analysis method was used to examine productions in a paradigm yielding both general disruptions to formulation processes and, more specifically, overt errors during lexical selection. This analysis method allowed us to examine articulatory disruptions at multiple levels of analysis, from whole words to individual segments. Baseline performance by young adults was contrasted with young speakers’ performance under time pressure (which previous work has argued increases interaction between planning and articulation) and performance by older adults (who may have difficulties inhibiting nontarget representations, leading to heightened interactive effects). The results revealed the presence of interactive effects. Our new analysis techniques revealed these effects were strongest in initial portions of responses, suggesting that speech is initiated as soon as the first segment has been planned. Interactive effects did not increase under response pressure, suggesting interaction between planning and articulation is relatively fixed. Unexpectedly, lexical selection disruptions appeared to yield some degree of facilitation in articulatory processing (possibly reflecting semantic facilitation of target retrieval) and older adults showed weaker, not stronger interactive effects (possibly reflecting weakened connections between lexical and form-level representations)

    Method and Apparatus for Measuring Near-Angle Scattering of Mirror Coatings

    Get PDF
    Disclosed herein is a method of determining the near angle scattering of a sample reflective surface comprising the steps of: a) splitting a beam of light having a coherence length of greater than or equal to about 2 meters into a sample beam and a reference beam; b) frequency shifting both the sample beam and the reference beam to produce a fixed beat frequency between the sample beam and the reference beam; c) directing the sample beam through a focusing lens and onto the sample reflective surface, d) reflecting the sample beam from the sample reflective surface through a detection restriction disposed on a movable stage; e) recombining the sample beam with the reference beam to form a recombined beam, followed by f) directing the recombined beam to a detector and performing heterodyne analysis on the recombined beam to measure the near-angle scattering of the sample reflective surface, wherein the position of the detection restriction relative to the sample beam is varied to occlude at least a portion of the sample beam to measure the near-angle scattering of the sample reflective surface. An apparatus according to the above method is also disclosed

    Exploration of a Polarized Surface Bidirectional Reflectance Model Using the Ground-Based Multiangle Spectropolarimetric Imager

    Get PDF
    Accurate characterization of surface reflection is essential for retrieval of aerosols using downward-looking remote sensors. In this paper, observations from the Ground-based Multiangle SpectroPolarimetric Imager (GroundMSPI) are used to evaluate a surface polarized bidirectional reflectance distribution function (PBRDF) model. GroundMSPI is an eight-band spectropolarimetric camera mounted on a rotating gimbal to acquire pushbroom imagery of outdoor landscapes. The camera uses a very accurate photoelastic-modulator-based polarimetric imaging technique to acquire Stokes vector measurements in three of the instrument's bands (470, 660, and 865 nm). A description of the instrument is presented, and observations of selected targets within a scene acquired on 6 January 2010 are analyzed. Data collected during the course of the day as the Sun moved across the sky provided a range of illumination geometries that facilitated evaluation of the surface model, which is comprised of a volumetric reflection term represented by the modified Rahman-Pinty-Verstraete function plus a specular reflection term generated by a randomly oriented array of Fresnel-reflecting microfacets. While the model is fairly successful in predicting the polarized reflection from two grass targets in the scene, it does a poorer job for two manmade targets (a parking lot and a truck roof), possibly due to their greater degree of geometric organization. Several empirical adjustments to the model are explored and lead to improved fits to the data. For all targets, the data support the notion of spectral invariance in the angular shape of the unpolarized and polarized surface reflection. As noted by others, this behavior provides valuable constraints on the aerosol retrieval problem, and highlights the importance of multiangle observations.NASAJPLCenter for Space Researc

    The measurement of the winds near the ocean surface with a radiometer-scatterometer on Skylab

    Get PDF
    The author has identified the following significant results. There were a total of twenty-six passes in the ZLV mode that yielded useful data. Six were in the in-track noncontiguous mode; all others were in the cross-track noncontiguous mode. The wind speed and direction, as effectively determined in a neutral atmosphere at 19.5 m above the sea surface, were found for each cell scanned by S193. It is shown how the passive microwave measurements were used both to compute the attenuation of the radar beam and to determine those cells where the backscatter measurement was suspect. Given the direction of the wind from some independent source, with the typical accuracy of measurement by available meteorological methods, a backscatter measurement at a nadir angle of 50, 43, or 32 deg can be used to compute the speed of the wind averaged over the illuminated area

    The protective effect of FK506 pretreatment against renal ischemia/reperfusion injury in rats

    Get PDF
    The effect of pretreatment with FK506 on renal ischemia and reperfusion (I/R) injury was investigated using a rat model. Animals were assigned to one of two groups (20 rats each). Group 1 animals (controls) received 0.5 ml saline while group 2 animals received FK506 (0.3 mg/kg), administered intravenously 24 hr prior to the induction of renal ischemia. A 60-min period of ischemia of the right kidney was induced, and upon reperfusion a left nephrectomy was performed. Blood samples for estimation of BUN, creatinine, and tumor necrosis factor were collected on days 0 (preischemia), 1, 2, 3, 5, 7, and 10 (postischemia). Rats were sacrificed after day 10 and renal tissue was examined histologically. All animals survived the ischemic episode. FK506 pretreatment significantly reduced the serum levels of BUN (P<0.02), creatinine (P<0.02), and TNF (P<0.05) as compared with that seen in controls. Histologically, at day 10, the kidneys showed the expected sequelae of prior renal I/R with various degrees of tubular damage. However, no objective differences were evident between the two groups. Based upon these data, it can be concluded that (1) FK506 pretreatment ameliorates the functional renal injury associated with I/R, (2) renal ischemia induces the release of TNF, and (3) FK506 pretreatment results in a significant inhibition of TNF production. These data suggest that the release of TNF may be responsible for the increasing of BUN and creatinine levels seen after renal I/R and that pretreatment of renal donors with FK506 may improve renal function in the immediate post-transplant period. © 1992 by Williams and Wilkins

    Coherent Detector for Near-Angle Scattering and Polarization Characterization of Telescope Mirror Coatings

    Get PDF
    A report discusses the difficulty of measuring scattering properties of coated mirrors extremely close to the specular reflection peak. A prototype Optical Hetero dyne Near-angle Scatterometer (OHNS) was developed. Light from a long-coherence-length (>150 m) 532-nm laser is split into two arms. Acousto-optic modulators frequency shift the sample and reference beams, establishing a fixed beat frequency between the beams. The sample beam is directed at very high f/# onto a mirror sample, and the point spread function (PSF) formed after the mirror sample is scanned with a pinhole. This light is recombined by a non-polarizing beam splitter and measured through heterodyne detection with a spectrum analyzer. Polarizers control the illuminated and analyzed polarization states, allowing the polarization dependent scatter to be measured. The bidirectional reflective or scattering distribution function is normally measured through use of a scattering goniometer instrument. The instrumental beam width (collection angle span) over which the scatterometer responds is typically many degrees. The OHNS enables measurement at angles as small as the first Airy disk diameter

    On Lorentz Invariant Actions for Chiral P-Forms

    Full text link
    We demonstrate how a Lorentz covariant formulation of the chiral p-form model in D=2(p+1) containing infinitely many auxiliary fields is related to a Lorentz covariant formulation with only one auxiliary scalar field entering a chiral p-form action in a nonpolynomial way. The latter can be regarded as a consistent Lorentz-covariant truncation of the former. We make the Hamiltonian analysis of the model based on the nonpolynomial action and show that the Dirac constraints have a simple form and are all of the first class. In contrast to the Siegel model the constraints are not the square of second-class constraints. The canonical Hamiltonian is quadratic and determines energy of a single chiral p-form. In the case of d=2 chiral scalars the constraint can be improved by use of `twisting' procedure (without the loss of the property to be of the first class) in such a way that the central charge of the quantum constraint algebra is zero. This points to possible absence of anomaly in an appropriate quantum version of the model.Comment: RevTeX file, 7 page

    Laser-modified one- and two-photon absorption:Expanding the scope of optical nonlinearity

    Get PDF
    It is shown that conventional one-photon and two-photon absorption processes can be made subject to nonlinear optical control, in each case significantly modifying the efficiency of absorption, through the effect of a secondary, off-resonant stimulus laser beam. The mechanistic origin of these laser-modified absorption processes, in which the stimulus beam emerges unchanged, is traced to higher-order terms in standard perturbation treatments. These normally insignificant terms become unusually prominent when the secondary optical stimulus is moderately intense. Employing a quantum formulation, the effects of the stimulus beam on one-photon and two-photon absorption are analyzed, and calculations are performed to determine the degree of absorption enhancement, and the form of spectral manifestation, under various laser intensities. The implications of differences in selection rules are also considered and exemplified, leading to the identification of dark states that can be populated as a result of laser-modified absorption. Attention is also drawn to the possibility of quantum nondemolition measurements, based on such a form of optical nonlinearity
    corecore