214 research outputs found

    Glacial-interglacial changes in bottom-water oxygen content on the Portuguese margin

    Get PDF
    During the last and penultimate glacial maxima, atmospheric CO2 concentrations were lower than present, possibly in part because of increased storage of respired carbon in the deep oceans. The amount of respired carbon present in a water mass can be calculated from its oxygen content through apparent oxygen utilization; the oxygen content can in turn be calculated from the carbon isotope gradient within the sediment column. Here we analyse the shells of benthic foraminifera occurring at the sediment surface and the oxic/anoxic interface on the Portuguese Margin to reconstruct the carbon isotope gradient and hence bottom-water oxygenation over the past 150,000 years. We find that bottom-water oxygen concentrations were 45 and 65 μmol kg−1 lower than present during the last and penultimate glacial maxima, respectively. We calculate that concentrations of remineralized organic carbon were at least twice as high as today during the glacial maxima. We attribute these changes to decreased ventilation linked to a reorganization of ocean circulation and a strengthened global biological pump. If the respired carbon pool was of a similar size throughout the entire glacial deep Atlantic basin, then this sink could account for 15 and 20 per cent of the glacial PCO2 drawdown during the last and penultimate glacial maxima

    Magnetic record of deglaciation using FORC-PCA, sortable-silt grain size, and magnetic excursion at 26 ka, from the Rockall Trough (NE Atlantic)

    Get PDF
    Core MD04-2822 from the Rockall Trough has apparent sedimentation rates of ∼ 1 m/kyr during the last deglaciation (Termination I). Component magnetization directions indicate a magnetic excursion at 16.3 m depth in the core, corresponding to an age of 26.5 ka, implying an excursion duration of ∼350 years. Across Termination I, the mean grain size of sortable silt implies reduced bottom-current velocity in the Younger Dryas and Heinrich Stadial (HS)−1A, and increased velocities during the Bølling-Allerød warm period. Standard bulk magnetic parameters imply fining of magnetic grain size from the mid-Younger Dryas (∼12 ka) until ∼ 8 ka. First-order reversal curves (FORCs) were analyzed using ridge extraction to differentiate single domain (SD) from background (detrital) components. Principal component analysis (FORC-PCA) was then used to discriminate three end members corresponding to SD, pseudo-single domain (PSD), and multidomain (MD) magnetite. The fining of bulk magnetic grain size from 12 to 8 ka is due to reduction in concentration of detrital (PSD + MD) magnetite, superimposed on a relatively uniform concentration of SD magnetite produced by magnetotactic bacteria. The decrease in PSD+MD magnetite concentration from 12 to 8 ka is synchronized with increase in benthic δ13C, and with major (∼70 m) regional sea-level rise, and may therefore be related to detrital sources on the shelf that had reduced influence as sea level rose, and to bottom-water reorganization as Northern Source Water (NSW) replaced Southern Source Water (SSW)

    Derivation of Del180 from sediment core log data\u27 Implications for millennial-scale climate change in the Labrador Sea

    Get PDF
    Sediment core logs from six sediment cores in the Labrador Sea show millennial-scale climate variability during the last glacial by recording all Heinrich events and several major Dansgaard-Oeschger cycles. The same millennial-scale climate change is documented for surface water δ18O records of Neogloboquadrina pachyderma (left coiled); hence the surface water δ18O record can be derived from sediment core logging by means of multiple linear regression, providing a paleoclimate proxy record at very high temporal resolution (70 years). For the Labrador Sea, sediment core logs contain important information about deepwater current velocities and also reflect the variable input of ice-rafted debris from different sources as inferred from grain-size analysis, the relation of density and P wave velocity, and magnetic susceptibility. For the last glacial, faster deepwater currents, which correspond to highs in sediment physical properties, occurred during iceberg discharge and lasted from several centuries to a few millennia. Those enhanced currents might have contributed to increased production of intermediate waters during times of reduced production of North Atlantic Deep Water. Hudson Strait might have acted as a major supplier of detrital carbonate only during lowered sea level (greater ice extent). During coldest atmospheric temperatures over Greenland, deepwater currents increased during iceberg discharge in the Labrador Sea, then surface water freshened shortly thereafter, while the abrupt atmospheric temperature rise happened after a larger time lag of ≥ 1 kyr. The correlation implies a strong link and common forcing for atmosphere, sea surface, and deep water during the last glacial at millennial timescales but decoupling at orbital timescales

    Radiocarbon constraints on the glacial ocean circulation and its impact on atmospheric CO2

    Get PDF
    While the ocean’s large-scale overturning circulation is thought to have been significantly different under the climatic conditions of the Last Glacial Maximum (LGM), the exact nature of the glacial circulation and its implications for global carbon cycling continue to be debated. Here we use a global array of ocean–atmosphere radiocarbon disequilibrium estimates to demonstrate a ∼689±53 14C-yr increase in the average residence time of carbon in the deep ocean at the LGM. A predominantly southern-sourced abyssal overturning limb that was more isolated from its shallower northern counterparts is interpreted to have extended from the Southern Ocean, producing a widespread radiocarbon age maximum at mid-depths and depriving the deep ocean of a fast escape route for accumulating respired carbon. While the exact magnitude of the resulting carbon cycle impacts remains to be confirmed, the radiocarbon data suggest an increase in the efficiency of the biological carbon pump that could have accounted for as much as half of the glacial–interglacial CO2 change

    Methodological approaches to determining the marine radiocarbon reservoir effect

    Get PDF
    The marine radiocarbon reservoir effect is an offset in 14C age between contemporaneous organisms from the terrestrial environment and organisms that derive their carbon from the marine environment. Quantification of this effect is of crucial importance for correct calibration of the <sup>14</sup>C ages of marine-influenced samples to the calendrical timescale. This is fundamental to the construction of archaeological and palaeoenvironmental chronologies when such samples are employed in <sup>14</sup>C analysis. Quantitative measurements of temporal variations in regional marine reservoir ages also have the potential to be used as a measure of process changes within Earth surface systems, due to their link with climatic and oceanic changes. The various approaches to quantification of the marine radiocarbon reservoir effect are assessed, focusing particularly on the North Atlantic Ocean. Currently, the global average marine reservoir age of surface waters, R(t), is c. 400 radiocarbon years; however, regional values deviate from this as a function of climate and oceanic circulation systems. These local deviations from R(t) are expressed as +R values. Hence, polar waters exhibit greater reservoir ages (δR = c. +400 to +800 <sup>14</sup>C y) than equatorial waters (δR = c. 0 <sup>14</sup>C y). Observed temporal variations in δR appear to reflect climatic and oceanographic changes. We assess three approaches to quantification of marine reservoir effects using known age samples (from museum collections), tephra isochrones (present onshore/offshore) and paired marine/terrestrial samples (from the same context in, for example, archaeological sites). The strengths and limitations of these approaches are evaluated using examples from the North Atlantic region. It is proposed that, with a suitable protocol, accelerator mass spectrometry (AMS) measurements on paired, short-lived, single entity marine and terrestrial samples from archaeological deposits is the most promising approach to constraining changes over at least the last 5 ky BP

    Sediment pumping by tidal asymmetry in a partially mixed estuary

    Get PDF
    Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 112 (2007): C07028, doi:10.1029/2006JC003784.Observations collected at two laterally adjacent locations are used to examine the processes driving sediment transport in the partially mixed York River Estuary. Estimates of sediment flux are decomposed into advective and pumping components, to evaluate the importance of tidal asymmetries in turbulent mixing. At the instrumented location in the estuarine channel, a strong asymmetry in internal mixing due to tidal straining is documented, with higher values of eddy viscosity occurring during the less-stratified flood tide. As a result of this asymmetry, more sediment is resuspended during the flood phase of the tide resulting in up-estuary pumping of sediment despite a net down-estuary advective flux. At the instrumented location on the adjacent shoal, where no pronounced tidal asymmetry in internal mixing was found, both the pumping flux and advective flux were directed down-estuary. The down-estuary pumping of sediment on the shoal appears to be driven by asymmetries in bed stress. The impact of tidal asymmetries in bed stress at the channel location was negated because the amount of sediment available for resuspension was limited. As a result, the pumping flux was dominated by the overlying asymmetries in internal mixing. The asymmetries in stratification appear to exert an important control on the vertical distribution of sediment by both impacting the eddy diffusivity as well as the fall velocity. During the more turbulent flood tide, the fall velocities are smaller suggesting the Kolmogorov microscale is setting the upper bound on floc diameter.Support for this research at VIMS was provided by the National Science Foundation Division of Ocean Sciences grants OCE-9984941 and OCE-0536572

    Radiocarbon constraints on the glacial ocean circulation and its impact on atmospheric CO2_2

    Get PDF
    While the ocean's large-scale overturning circulation is thought to have been significantly different under the climatic conditions of the Last Glacial Maximum (LGM), the exact nature of the glacial circulation and its implications for global carbon cycling continue to be debated. Here we use a global array of ocean-atmosphere radiocarbon disequilibrium estimates to demonstrate a ~689±53 14^{14}C-yr increase in the average residence time of carbon in the deep ocean at the LGM. A predominantly southern-sourced abyssal overturning limb that was more isolated from its shallower northern counterparts is interpreted to have extended from the Southern Ocean, producing a widespread radiocarbon age maximum at mid-depths and depriving the deep ocean of a fast escape route for accumulating respired carbon. While the exact magnitude of the resulting carbon cycle impacts remains to be confirmed, the radiocarbon data suggest an increase in the efficiency of the biological carbon pump that could have accounted for as much as half of the glacial-interglacial CO2_2 change.This work was made possible by NERC grant NE/L006421/1, and was supported by NERC radiocarbon analysis allocation number 1245.1007, as well as the Royal Society and the Cambridge Isaac Newton Trust

    Textural variations in Neogene pelagic carbonate ooze at DSDP Site 593, southern Tasman Sea, and their paleoceanographic implications

    Get PDF
    Changes in Neogene sediment texture in pelagic carbonate-rich oozes on the Challenger Plateau, southern Tasman Sea, are used to infer changes in depositional paleocurrent velocities. The most obvious record of textural change is in the mud:sand ratio. Increases in the sand content are inferred to indicate a general up-core trend towards increasing winnowing of sediments resulting from increasing flow velocity of Southern Component Intermediate Water (SCIW), the forerunner of Antarctic Intermediate Water. In particular, the intervals c. 19-14.5 Ma, c. 9.5-8 Ma, and after 5 Ma are suggested to be times of increased SCIW velocity and strong sediment winnowing. Within the mud fraction, the fine silt to coarse clay sizes from 15.6 to 2 µm make the greatest contribution to the sediments and are composed of nannofossil plates. During extreme winnowing events it is the fine silt to very coarse clay material (13-3 µm) within this range that is preferentially removed, suggesting the 10 µm cohesive silt boundary reported for siliciclastic sediments does not apply to calcitic skeletal grains. The winnowed sediment comprises coccolithophore placoliths and spheres, represented by a mode at 4-7 µm. Further support for seafloor winnowing is gained from the presence in Hole 593 of a condensed sedimentary section from c. 18 to 14 Ma where the sand content increases to c. 20% of the bulk sample. Associated with the condensed section is a 6 m thick orange unit representing sediments subjected to particularly oxygen-rich, late early to early middle Miocene SCIW. Together these are inferred to indicate increased SCIW velocity resulting in winnowed sediment associated with faster arrival of oxygen-rich surface water subducted to form SCIW. Glacial development of Antarctica has been recorded from many deep-sea sites, with extreme glacials providing the mechanism to increase watermass flow. Miocene glacial zones Mi1b-Mi6 are identified in an associated oxygen isotope record from Hole 593, and correspond with times of particularly invigorated paleocirculation, bottom winnowing, and sediment textural changes

    Multibeam bathymetric surveys of submarine volcanoes and mega-pockmarks on the Chatham Rise, New Zealand

    Get PDF
    Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of Taylor & Francis for personal use, not for redistribution. The definitive version was published in New Zealand Journal of Geology and Geophysics 54 (2011): 329-339, doi:10.1080/00288306.2011.589860.Multibeam bathymetric surveys east of the South Island of New Zealand present images of submarine volcanoes and pockmarks west of Urry Knolls on the Chatham Rise, and evidence of submarine erosion on the southern margin of the Chatham Rise. Among numerous volcanic cones, diameters of the largest reach ~2000 m, and some stand as high as 400 m above the surrounding seafloor. The tops of most of the volcanic cones are flat, with hints of craters, and some with asymmetric shapes may show flank collapses. There are hints of both northeast-southwest and northwest-southeast alignments of volcanoes, but no associated faulting is apparent. Near and to the west of these volcanoes, huge pockmarks, some more than ~1 km in diameter, disrupt bottom topography. Pockmarks in this region seem to be confined to sea floor shallower than ~1200 m, but we see evidence of deeper pockmarks at water depths of up to 2100 m on profiles crossing the Bounty Trough. The pockmark field on the Chatham Rise seems to be bounded on the south by a trough near 1200 m depth; like others, we presume that contour currents have eroded the margin and created the trough.This research was supported by the National Science Foundation under grants EAR-0409564, EAR-0409609, and EAR-0409835.2012-08-3

    More efficient North Atlantic carbon pump during the Last Glacial Maximum

    Get PDF
    During the Last Glacial Maximum (LGM; ~20,000 years ago), the global ocean sequestered a large amount of carbon lost from the atmosphere and terrestrial biosphere. Suppressed CO2 outgassing from the Southern Ocean is the prevailing explanation for this carbon sequestration. By contrast, the North Atlantic Ocean—a major conduit for atmospheric CO2 transport to the ocean interior via the overturning circulation—has received much less attention. Here we demonstrate that North Atlantic carbon pump efficiency during the LGM was almost doubled relative to the Holocene. This is based on a novel proxy approach to estimate air–sea CO2 exchange signals using combined carbonate ion and nutrient reconstructions for multiple sediment cores from the North Atlantic. Our data indicate that in tandem with Southern Ocean processes, enhanced North Atlantic CO2 absorption contributed to lowering ice-age atmospheric CO2
    corecore