2,111 research outputs found

    Lunar penetrometer Patent

    Get PDF
    Development and characteristics of pentrometer for measuring physical properties of lunar surfac

    The eMERGE Network: A consortium of biorepositories linked to electronic medical records data for conducting genomic studies

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>The eMERGE (electronic MEdical Records and GEnomics) Network is an NHGRI-supported consortium of five institutions to explore the utility of DNA repositories coupled to Electronic Medical Record (EMR) systems for advancing discovery in genome science. eMERGE also includes a special emphasis on the ethical, legal and social issues related to these endeavors.</p> <p>Organization</p> <p>The five sites are supported by an Administrative Coordinating Center. Setting of network goals is initiated by working groups: (1) Genomics, (2) Informatics, and (3) Consent & Community Consultation, which also includes active participation by investigators outside the eMERGE funded sites, and (4) Return of Results Oversight Committee. The Steering Committee, comprised of site PIs and representatives and NHGRI staff, meet three times per year, once per year with the External Scientific Panel.</p> <p>Current progress</p> <p>The primary site-specific phenotypes for which samples have undergone genome-wide association study (GWAS) genotyping are cataract and HDL, dementia, electrocardiographic QRS duration, peripheral arterial disease, and type 2 diabetes. A GWAS is also being undertaken for resistant hypertension in ≈2,000 additional samples identified across the network sites, to be added to data available for samples already genotyped. Funded by ARRA supplements, secondary phenotypes have been added at all sites to leverage the genotyping data, and hypothyroidism is being analyzed as a cross-network phenotype. Results are being posted in dbGaP. Other key eMERGE activities include evaluation of the issues associated with cross-site deployment of common algorithms to identify cases and controls in EMRs, data privacy of genomic and clinically-derived data, developing approaches for large-scale meta-analysis of GWAS data across five sites, and a community consultation and consent initiative at each site.</p> <p>Future activities</p> <p>Plans are underway to expand the network in diversity of populations and incorporation of GWAS findings into clinical care.</p> <p>Summary</p> <p>By combining advanced clinical informatics, genome science, and community consultation, eMERGE represents a first step in the development of data-driven approaches to incorporate genomic information into routine healthcare delivery.</p

    Antecedents and outcomes of consumer environmentally friendly attitudes and behaviour

    Get PDF
    With the intensification of problems relating to the environment, a growing number of consumers are becoming more ecologically conscious in their preferences and purchases of goods. This paper presents the results of a study conducted among 500 Cypriot consumers, focusing on the factors that shape consumer environmental attitudes and behaviour, as well as on the resulting outcomes. The findings confirmed that both the inward and outward environmental attitudes of a consumer are positively influenced by his/her degree of collectivism, long-term orientation, political involvement, deontology, and law obedience, but have no connection with liberalism. The adoption of an inward environmental attitude was also found to be conducive to green purchasing behaviour that ultimately leads to high product satisfaction. On the other hand, an outward environmental attitude facilitates the adoption of a general environmental behaviour, which is responsible for greater satisfaction with life. The findings of the study have important implications for shaping effective company offerings to consumers in target markets, as well as formulating appropriate policies at the governmental level to enhance environmental sensitivity among citizens

    Cytoplasmic PML promotes TGF-β-associated epithelial–mesenchymal transition and invasion in prostate cancer

    Get PDF
    Epithelial–mesenchymal transition (EMT) is a key event that is involved in the invasion and dissemination of cancer cells. Although typically considered as having tumour-suppressive properties, transforming growth factor (TGF)-β signalling is altered during cancer and has been associated with the invasion of cancer cells and metastasis. In this study, we report a previously unknown role for the cytoplasmic promyelocytic leukaemia (cPML) tumour suppressor in TGF-β signalling-induced regulation of prostate cancer-associated EMT and invasion. We demonstrate that cPML promotes a mesenchymal phenotype and increases the invasiveness of prostate cancer cells. This event is associated with activation of TGF-β canonical signalling pathway through the induction of Sma and Mad related family 2 and 3 (SMAD2 and SMAD3) phosphorylation. Furthermore, the cytoplasmic localization of promyelocytic leukaemia (PML) is mediated by its nuclear export in a chromosomal maintenance 1 (CRM1)-dependent manner. This was clinically tested in prostate cancer tissue and shown that cytoplasmic PML and CRM1 co-expression correlates with reduced disease-specific survival. In summary, we provide evidence of dysfunctional TGF-β signalling occurring at an early stage in prostate cancer. We show that this disease pathway is mediated by cPML and CRM1 and results in a more aggressive cancer cell phenotype. We propose that the targeting of this pathway could be therapeutically exploited for clinical benefit

    A selected ion flow tube study of the ion-molecule reactions of monochloroethene, trichloroethene and tetrachloroethene

    Get PDF
    Data for the rate coefficients and product cations of the reactions of a large number of atomic and small molecular cations with monochloroethene, trichloroethene and tetrachloroethene in a selected ion flow tube at 298 K are reported. The recombination energy of the ions range from 6.27 eV (H3_3O+^+) through to 21.56 eV (Ne+^+). Collisional rate coefficients are calculated by modified average dipole orientation theory and compared with experimental values. Thermochemistry and mass balance predict the most feasible neutral products. Together with previously reported results for the three isomers of dichloroethene (J. Phys. Chem. A., 2006, 110, 5760), the fragment ion branching ratios have been compared with those from threshold photoelectron photoion coincidence spectroscopy over the photon energy range 9-22 eV to determine the importance or otherwise of long-range charge transfer. For ions with recombination energy in excess of the ionisation energy of the chloroethene, charge transfer is energetically allowed. The similarity of the branching ratios from the two experiments suggest that long-range charge transfer is dominant. For ions with recombination energy less than the ionisation energy, charge transfer is not allowed; chemical reaction can only occur following formation of an ion-molecule complex, where steric effects are more significant. The products that are now formed and their percentage yield is a complex interplay between the number and position of the chlorine atoms with respect to the C=C bond, where inductive and conjugation effects can be important

    C-axis electronic Raman scattering in Bi_2Sr_2CaCu_2O_{8+\delta}

    Full text link
    We report a c-axis-polarized electronic Raman scattering study of Bi_2Sr_2CaCu_2O_{8+\delta} single crystals. In the normal state, a resonant electronic continuum extends to 1.5 eV and gains significant intensity as the incoming photon energy increases. In the superconducting state, a coherence 2\Delta peak appears around 50 meV, with a suppression of the scattering intensity at frequencies below the peak position. The peak energy, which is higher than that seen with in-plane polarizations, signifies distinctly different dynamics of quasiparticle excitations created with out-of-plane polarization.Comment: 12 pages, REVTEX, 3 postscript figure

    Effective Soft-Core Potentials and Mesoscopic Simulations of Binary Polymer Mixtures

    Full text link
    Mesoscopic molecular dynamics simulations are used to determine the large scale structure of several binary polymer mixtures of various chemical architecture, concentration, and thermodynamic conditions. By implementing an analytical formalism, which is based on the solution to the Ornstein-Zernike equation, each polymer chain is mapped onto the level of a single soft colloid. From the appropriate closure relation, the effective, soft-core potential between coarse-grained units is obtained and used as input to our mesoscale simulations. The potential derived in this manner is analytical and explicitly parameter dependent, making it general and transferable to numerous systems of interest. From computer simulations performed under various thermodynamic conditions the structure of the polymer mixture, through pair correlation functions, is determined over the entire miscible region of the phase diagram. In the athermal regime mesoscale simulations exhibit quantitative agreement with united atom simulations. Furthermore, they also provide information at larger scales than can be attained by united atom simulations and in the thermal regime approaching the phase transition.Comment: 19 pages, 11 figures, 3 table

    Espectroscopia infravermelha para a determinação de carbono do solo: perspectiva de um método economicamente viável e ambientalmente seguro.

    Get PDF
    O objetivo deste trabalho foi apresentar a utilidade das técnicas DRIFTS e NIRS na determinação quantitativa de carbono total (CT) determinado por combustão via seca e carbono orgânico (CORG) determinado por oxidação com dicromato de potássio, usando uma série heterogênea e representativa de solos do Brasil. Calibrações foram feitas para o número total das amostras e para as sub-populações de amostras com base no teor de C, classe de solo e grupo textural.bitstream/CNPAF/25440/1/comt_126.pd

    Herbicide-Resistance in Turf Systems: Insights and Options for Managing Complexity

    Get PDF
    Due to complex interactions between social and ecological systems, herbicide resistance has classic features of a “wicked problem.” Herbicide-resistant (HR) Poa annua poses a risk to sustainably managing U.S. turfgrass systems, but there is scant knowledge to guide its management. Six focus groups were conducted throughout the United States to gain understanding of socio-economic barriers to adopting herbicide-resistance management practices. Professionals from major turfgrass sectors (golf courses, sports fields, lawn care, and seed/sod production) were recruited as focus-group participants. Discussions emphasized challenges of the weed management of turfgrass systems as compared to agronomic crops. This included greater time constraints for managing weeds and more limited chemical control options. Lack of understanding about the proper use of compounds with different modes of action was identified as a threat to sustainable weed management. There were significant regional differences in perceptions of the existence, geographic scope, and social and ecological causes of HR in managing Poa annua. Effective resistance management will require tailoring chemical and non-chemical practices to the specific conditions of different turfgrass sectors and regions. Some participants thought it would be helpful to have multi-year resistance management programs that are both sector- and species-specific
    corecore