23,375 research outputs found
Current Research in Aircraft Tire Design and Performance
A review of the tire research programs which address the various needs identified by landing gear designers and airplane users is presented. The experimental programs are designed to increase tire tread lifetimes, relate static and dynamic tire properties, establish the tire hydroplaning spin up speed, study gear response to tire failures, and define tire temperature profiles during taxi, braking, and cornering operations. The analytical programs are aimed at providing insights into the mechanisms of heat generation in rolling tires and developing the tools necessary to streamline the tire design process and to aid in the analysis of landing gear problems
Model based methodology development for energy recovery in ash heat exchange systems
Flash tank evaporation combined with a condensing heat exchanger can be used when heat exchange is required between two streams and where at least one of these streams is difficult to handle (in terms of solid particles content, viscosity, pH, consistency etc.). To increase the efficiency of heat exchange, a cascade of these units in series can be used. Heat transfer relationships in such a cascade are very complex due to their interconnectivity, thus the impact of any changes proposed is difficult to predict. In this report, a mathematical model of a single unit ash tank evaporator combined with a condensing heat exchanger unit is proposed. This model is then developed for a chain of the units. The purpose of this model is to allow an accurate evaluation of the effect and result of an alteration to the system. The resulting model
is applied to the RUSAL Aughinish Alumina digester area
Direct angiotensin AT2 receptor stimulation using a novel AT2 receptor agonist, compound 21, evokes neuroprotection in conscious hypertensive rats
Background:
In this study, the neuroprotective effect of a novel nonpeptide AT2R agonist, C21, was examined in a conscious model of stroke to verify a class effect of AT2R agonists as neuroprotective agents.
Methods and Results:
Spontaneously hypertensive rats (SHR) were pre-treated for 5 days prior to stroke with C21 alone or in combination with the AT2R antagonist PD123319. In a separate series of experiments C21 was administered in a series of 4 doses commencing 6 hours after stroke. A focal reperfusion model of ischemia was induced in conscious SHR by administering endothelin-1 to the middle cerebral artery (MCA). Motor coordination was assessed at 1 and 3 days after stroke and post mortem analyses of infarct volumes, microglia activation and neuronal survival were performed at 72 hours post MCA occlusion. When given prior to stroke, C21 dose dependently decreased infarct volume, which is consistent with the behavioural findings illustrating an improvement in motor deficit. During the pre-treatment protocol C21 was shown to enhance microglia activation, which are likely to be evoking protection by releasing brain derived neurotrophic factor. When drug administration was delayed until 6 hours after stroke, C21 still reduced brain injury.
Conclusion:
These results indicate that centrally administered C21 confers neuroprotection against stroke damage. This benefit is likely to involve various mechanisms, including microglial activation of endogenous repair and enhanced cerebroperfusion. Thus, we have confirmed the neuroprotective effect of AT2R stimulation using a nonpeptide compound which highlights the clinical potential of the AT2R agonists for future development
Cosmology with velocity dispersion counts: an alternative to measuring cluster halo masses
The evolution of galaxy cluster counts is a powerful probe of several
fundamental cosmological parameters. A number of recent studies using this
probe have claimed tension with the cosmology preferred by the analysis of the
Planck primary CMB data, in the sense that there are fewer clusters observed
than predicted based on the primary CMB cosmology. One possible resolution to
this problem is systematic errors in the absolute halo mass calibration in
cluster studies, which is required to convert the standard theoretical
prediction (the halo mass function) into counts as a function of the observable
(e.g., X-ray luminosity, Sunyaev-Zel'dovich flux, optical richness). Here we
propose an alternative strategy, which is to directly compare predicted and
observed cluster counts as a function of the one-dimensional velocity
dispersion of the cluster galaxies. We argue that the velocity dispersion of
groups/clusters can be theoretically predicted as robustly as mass but, unlike
mass, it can also be directly observed, thus circumventing the main systematic
bias in traditional cluster counts studies. With the aid of the BAHAMAS suite
of cosmological hydrodynamical simulations, we demonstrate the potential of the
velocity dispersion counts for discriminating even similar CDM models.
These predictions can be compared with the results from existing redshift
surveys such as the highly-complete Galaxy And Mass Assembly (GAMA) survey, and
upcoming wide-field spectroscopic surveys such as the Wide Area Vista
Extragalactic Survey (WAVES) and the Dark Energy Survey Instrument (DESI).Comment: 15 pages, 13 figures. Accepted for publication in MNRAS. New section
on cosmological forecasts adde
Advanced tracking systems design and analysis
The results of an assessment of several types of high-accuracy tracking systems proposed to track the spacecraft in the National Aeronautics and Space Administration (NASA) Advanced Tracking and Data Relay Satellite System (ATDRSS) are summarized. Tracking systems based on the use of interferometry and ranging are investigated. For each system, the top-level system design and operations concept are provided. A comparative system assessment is presented in terms of orbit determination performance, ATDRSS impacts, life-cycle cost, and technological risk
- …