84 research outputs found

    Dishabituation of the BOLD response to speech sounds

    Get PDF
    BACKGROUND: Neural systems show habituation responses at multiple levels, including relatively abstract language categories. Dishabituation – responses to non-habituated stimuli – can provide a window into the structure of these categories, without requiring an overt task. METHODS: We used an event-related fMRI design with short interval habituation trials, in which trains of stimuli were presented passively during 1.5 second intervals of relative silence between clustered scans. Trains of four identical stimuli (standard trials) and trains of three identical stimuli followed by a stimulus from a different phonetic category (deviant trials) were presented. This paradigm allowed us to measure and compare the time course of overall responses to speech, and responses to phonetic change. RESULTS: Comparisons between responses to speech and silence revealed strong responses throughout the extent of superior temporal gyrus (STG) bilaterally. Comparisons between deviant and standard trials revealed dishabituation responses in a restricted region of left posterior STG, near the border with supramarginal gyrus (SMG). Novelty responses to deviant trials were also observed in right frontal regions and hippocampus. CONCLUSION: A passive, dishabituation paradigm provides results similar to studies requiring overt responses. This paradigm can readily be extended for the study of pre-attentive processing of speech in populations such as children and second-language learners whose overt behavior is often difficult to interpret because of ancillary task demands

    Fast, visual specialization for reading in English revealed by the topography of the N170 ERP response

    Get PDF
    BACKGROUND: N170 effects associated with visual words may be related to perceptual expertise effects that have been demonstrated for faces and other extensively studied classes of visual stimuli. Although face and other object expertise effects are typically bilateral or right-lateralized, the spatial topography of reading-related N170 effects are often left-lateralized, providing potential insights into the unique aspects of reading-related perceptual expertise. METHODS: Extending previous research in German [1], we use a high-density channel array to characterize the N170 topography for reading-related perceptual expertise in English, a language with inconsistent spelling-to-sound mapping. N170 effects related to overall reading-related expertise are defined by contrasting responses to visual words versus novel symbol strings. By contrasting each of these conditions to pseudowords, we examined how this reading-related N170 effect generalizes to well-ordered novel letter strings. RESULTS: A sample-by-sample permutation test computed on word versus symbol ERP topographies revealed differences during two time windows corresponding to the N170 and P300 components. Topographic centroid analysis of the word and symbol N170 demonstrated significant differences in both left-right as well as inferior-superior dimensions. Words elicited larger N170 negativities than symbols at inferior occipito-temporal channels, with the maximal effect over left inferior regions often unsampled in conventional electrode montages. Further contrasts produced inferior-superior topographic effects for the pseudoword-symbol comparison and left-lateralized topographic effects for the word-pseudoword comparison. CONCLUSION: Fast specialized perception related to reading experience produces an N170 modulation detectable across different EEG systems and different languages. Characterization of such effects may be improved by sampling with greater spatial frequency recordings that sample inferior regions. Unlike in German, reading-related expertise effects in English produced only partial generalization in N170 responses to novel pseudowords. The topographic inferior-superior N170 differences may reflect general perceptual expertise for orthographic strings, as it was found for words and pseudowords across both languages. The topographic left-right N170 difference between words and pseudowords was only found in English, and may suggest that ambiguity in pronunciating novel pseudowords due to inconsistency in spelling-to-sound mapping influences early stages of letter string processing

    Category Specificity in Early Perception: Face and Word N170 Responses Differ in Both Lateralization and Habituation Properties

    Get PDF
    N170 event-related potential (ERP) responses to both faces and visual words raises questions about category specific processing mechanisms during early perception and their neural basis. Topographic differences across word and face N170s suggests a form of category specific processing in early perception – the word N170 is consistently left-lateralized, while less consistent evidence supports a right-lateralization for the face N170. Additionally, the face N170 shows a reduction in amplitude across consecutive individual faces, a form of habituation that might differ across studies thereby helping to explain inconsistencies in lateralization. This effect remains unexplored for visual words. The current study directly contrasts N170 responses to words and faces within the same subjects, examining both category-level habituation and lateralization effects. ERP responses to a series of different faces and words were collected under two contexts: blocks that alternated faces and words vs. pure blocks of a single category designed to induce category-level habituation. Global and occipito-temporal measures of N170 amplitude demonstrated an interaction between category (words, faces) and block context (alternating categories, same category). N170 amplitude demonstrated class-level habituation for faces but not words. Furthermore, the pure block context diminished the right-lateralization of the face N170, pointing to class-level habituation as a factor that might drive inconsistencies in findings of right-lateralization across different paradigms. No analogous effect for the word N170 was found, suggesting category specificity for this form of habituation. Taken together, topographic and habituation effects suggest distinct forms of perceptual processing drive the face N170 and the visual word form N170

    The face-specific N170 component is modulated by emotional facial expression

    Get PDF
    BACKGROUND: According to the traditional two-stage model of face processing, the face-specific N170 event-related potential (ERP) is linked to structural encoding of face stimuli, whereas later ERP components are thought to reflect processing of facial affect. This view has recently been challenged by reports of N170 modulations by emotional facial expression. This study examines the time-course and topography of the influence of emotional expression on the N170 response to faces. METHODS: Dense-array ERPs were recorded in response to a set (n = 16) of fear and neutral faces. Stimuli were normalized on dimensions of shape, size and luminance contrast distribution. To minimize task effects related to facial or emotional processing, facial stimuli were irrelevant to a primary task of learning associative pairings between a subsequently presented visual character and a spoken word. RESULTS: N170 to faces showed a strong modulation by emotional facial expression. A split half analysis demonstrates that this effect was significant both early and late in the experiment and was therefore not associated with only the initial exposures of these stimuli, demonstrating a form of robustness against habituation. The effect of emotional modulation of the N170 to faces did not show significant interaction with the gender of the face stimulus, or hemisphere of recording sites. Subtracting the fear versus neutral topography provided a topography that itself was highly similar to the face N170. CONCLUSION: The face N170 response can be influenced by emotional expressions contained within facial stimuli. The topography of this effect is consistent with the notion that fear stimuli exaggerates the N170 response itself. This finding stands in contrast to previous models suggesting that N170 processes linked to structural analysis of faces precede analysis of emotional expression, and instead may reflect early top-down modulation from neural systems involved in rapid emotional processing

    Auditory Selective Attention to Speech Modulates Activity in the Visual Word Form Area

    Get PDF
    Selective attention to speech versus nonspeech signals in complex auditory input could produce top-down modulation of cortical regions previously linked to perception of spoken, and even visual, words. To isolate such top-down attentional effects, we contrasted 2 equally challenging active listening tasks, performed on the same complex auditory stimuli (words overlaid with a series of 3 tones). Instructions required selectively attending to either the speech signals (in service of rhyme judgment) or the melodic signals (tone-triplet matching). Selective attention to speech, relative to attention to melody, was associated with blood oxygenation level-dependent (BOLD) increases during functional magnetic resonance imaging (fMRI) in left inferior frontal gyrus, temporal regions, and the visual word form area (VWFA). Further investigation of the activity in visual regions revealed overall deactivation relative to baseline rest for both attention conditions. Topographic analysis demonstrated that while attending to melody drove deactivation equivalently across all fusiform regions of interest examined, attending to speech produced a regionally specific modulation: deactivation of all fusiform regions, except the VWFA. Results indicate that selective attention to speech can topographically tune extrastriate cortex, leading to increased activity in VWFA relative to surrounding regions, in line with the well-established connectivity between areas related to spoken and visual word perception in skilled reader

    Individual Differences in Distinct Components of Attention are Linked to Anatomical Variations in Distinct White Matter Tracts

    Get PDF
    Inter-subject variations in white matter tract properties are known to correlate with individual differences in performance in cognitive domains such as attention. The specificity of such linkages, however, is largely unexplored at the level of specific component operations of attention associated with distinct anatomical networks. This study examines individual performance variation within three functional components of attention – alerting, orienting, and conflict processing – identified by the Attention Network Task (ANT), and relates each to inter-subject variation in a distinct set of white matter tract regions. Diffusion tensor imaging data collected at 3T was used to calculate average fractional anisotropy within a set of individualized a priori defined regions of interest using the Reproducible Objective Quantification Scheme (ROQS) (Niogi and McCandliss, 2006; Niogi et al., 2007). Results demonstrate three functionally distinct components of attention that each correlate distinctly with three white matter tract regions. Structure–function correlations were found between alerting and the anterior limb of the internal capsule, orienting and the splenium of the corpus callosum, and conflict and the anterior corona radiata. A multiple regression/dissociation analysis demonstrated a triple dissociation between these three structure-function relationships that provided evidence of three anatomically and functionally separable networks. These results extend previous findings from functional imaging and lesion studies that suggest these three components of attention are subserved by dissociable networks, and suggest that variations in white matter tract microstructure may modulate the efficiency of these cognitive processes in highly specific ways

    Interventions to improve equational reasoning: replication and extension of the Cuisenaire-Gattegno curriculum effect

    Get PDF
    IntroductionThe ability to reason about equations in a robust and fluent way requires both instrumental knowledge of symbolic forms, syntax, and operations, as well as relational knowledge of how such formalisms map to meaningful relationships captured within mental models. A recent systematic review of studies contrasting the Cuisenaire-Gattegno (Cui) curriculum approach vs. traditional rote schooling on equational reasoning has demonstrated the positive efficacy of pedagogies that focus on integrating these two forms of knowledge.MethodsHere we seek to replicate and extend the most efficacious of these studies (Brownell) by implementing the curriculum to a high degree of fidelity, as well as capturing longitudinal changes within learners via a novel tablet-based assessment of accuracy and fluency with equational reasoning. We examined arithmetic fluency as a function of relational reasoning to equate initial performance across diverse groups and to track changes over four growth assessment points.ResultsResults showed that the intervention condition that stressed relational reasoning leads to advances in fluency for addition and subtraction with small numbers. We also showed that this intervention leads to changes in problem solving dispositions toward complex challenges, wherein students in the CUI intervention were more inclined to solve challenging problems relative to those in the control who gave up significantly earlier on multi-step problems. This shift in disposition was associated with higher accuracy on complex equational reasoning problems. A treatment by aptitude interaction emerged for both arithmetic equation reasoning and complex multi-step equational reasoning problems, both of which showed that the intervention had greatest impact for children with lower initial mathematical aptitude. Two years of intervention contrast revealed a large effect (d = 1) for improvements in equational reasoning for the experimental (CUI) group relative to control.DiscussionThe strong replication and extension findings substantiate the importance of embedding these teaching aides within the theory grounded curricula that gave rise to them

    Equational reasoning: A systematic review of the Cuisenaire–Gattegno approach

    Get PDF
    The Cuisenaire–Gattegno (Cui) approach to early mathematics uses color coded rods of unit increment lengths embedded in a systematic curriculum designed to guide learners as young as age five from exploration of integers and ratio through to formal algebraic writing. The effectiveness of this approach has been the subject of hundreds of investigations supporting positive results, yet with substantial variability in the nature of results across studies. Based on an historical analysis of one of the highest-fidelity studies (Brownell), which estimated a treatment effect on equation reasoning with an effect size of 1.66, we propose that such variability may be related to different emphases on the use of the manipulatives or on the curriculum from which they came. We conducted a systematic review and meta-analysis of Cui that sought to trace back to the earliest investigations of its efficacy. Results revealed the physical manipulatives component of the original approach (Cuisenaire Rods) have had greater adoption than efforts to retain or adopt curriculum elements from the Cuisenaire–Gattegno approach. To examine the impact of this, we extended the meta-analysis to index the degree to which each study of Cuisenaire Rods included efforts to align or incorporate curricular elements, practices, or goals with the original curriculum. Curriculum design fidelity captured a significant portion of the variability of efficacy results in the meta-analysis

    Auditory Selective Attention to Speech Modulates Activity in the Visual Word Form Area

    Get PDF
    Selective attention to speech versus nonspeech signals in complex auditory input could produce top-down modulation of cortical regions previously linked to perception of spoken, and even visual, words. To isolate such top-down attentional effects, we contrasted 2 equally challenging active listening tasks, performed on the same complex auditory stimuli (words overlaid with a series of 3 tones). Instructions required selectively attending to either the speech signals (in service of rhyme judgment) or the melodic signals (tone-triplet matching). Selective attention to speech, relative to attention to melody, was associated with blood oxygenation level–dependent (BOLD) increases during functional magnetic resonance imaging (fMRI) in left inferior frontal gyrus, temporal regions, and the visual word form area (VWFA). Further investigation of the activity in visual regions revealed overall deactivation relative to baseline rest for both attention conditions. Topographic analysis demonstrated that while attending to melody drove deactivation equivalently across all fusiform regions of interest examined, attending to speech produced a regionally specific modulation: deactivation of all fusiform regions, except the VWFA. Results indicate that selective attention to speech can topographically tune extrastriate cortex, leading to increased activity in VWFA relative to surrounding regions, in line with the well-established connectivity between areas related to spoken and visual word perception in skilled readers
    corecore