4,962 research outputs found

    Comparative grazing behaviour of lactating suckler cows of contrasting genetic merit and genotype

    Get PDF
    peer-reviewedThe objective of this study was to determine if differences in grazing behaviour exist between lactating suckler cows diverse in genetic merit for the national Irish Replacement index and of two contrasting genotypes. Data from 103 cows: 41 high and 62 low genetic merit, 43 beef and 60 beef x dairy (BDX) cows were available over a single grazing season in 2015. Milk yield, grass dry matter intake (GDMI), cow live weight (BW) and body condition score (BCS) were recorded during the experimental period, with subsequent measures of production efficiency extrapolated. Grazing behaviour data were recorded twice in conjunction with aforementioned measures, using Institute of Grassland and Environmental Research headset behaviour recorders. The effect of genotype and cow genetic merit during mid- and late-lactation on grazing behaviour phenotypes, milk yield, BW, BCS and GDMI were estimated using linear mixed models. Genetic merit had no significant effect on any production parameters investigated, with the exception that low genetic merit had a greater BCS than high genetic merit cows. Beef cows were heavier, had a greater BCS but produced less milk per day than BDX. The BDX cows produced more milk per 100 kg BW and per unit intake and had greater GDMI, intake per bite and rate of GDMI per 100 kg BW than beef cows. High genetic merit cows spent longer grazing and took more bites per day but had a lower rate of GDMI than low genetic merit cows, with the same trend found when expressed per unit of BW. High genetic merit cows spent longer grazing than low genetic merit cows when expressed on a per unit intake basis. Absolute rumination measures were similar across cow genotype and genetic merit. When expressed per unit BW, BDX cows spent longer ruminating per day compared to beef. However, on a per unit intake basis, beef cows ruminated longer and had more mastications than BDX. Intake per bite and rate of intake was positively correlated with GDMI per 100 kg BW. The current study implies that despite large differences in grazing behaviour between cows diverse in genetic merit, few differences were apparent in terms of production efficiency variables extrapolated. Conversely, differences in absolute grazing and ruminating behaviour measurements did not exist between beef cows of contrasting genotype. However, efficiency parameters investigated illustrate that BDX will subsequently convert herbage intake more efficiently to milk production

    CA19-9 as a Potential Target for Radiolabeled Antibody-Based Positron Emission Tomography of Pancreas Cancer.

    Get PDF
    Introduction. Sensitive and specific imaging of pancreas cancer are necessary for accurate diagnosis, staging, and treatment. The vast majority of pancreas cancers express the carbohydrate tumor antigen CA19-9. The goal of this study was to determine the potential to target CA19-9 with a radiolabeled anti-CA19-9 antibody for imaging pancreas cancer. Methods. CA19-9 was quantified using flow cytometry on human pancreas cancer cell lines. An intact murine anti-CA19-9 monoclonal antibody was labeled with a positron emitting radionuclide (Iodine-124) and injected into mice harboring antigen positive and negative xenografts. MicroPET/CT were performed at successive time intervals (72 hours, 96 hours, 120 hours) after injection. Radioactivity was measured in blood and tumor to provide objective confirmation of the images. Results. Antigen expression by flow cytometry revealed approximately 1.3 × 10(6) CA19-9 antigens for the positive cell line and no expression in the negative cell line. Pancreas xenograft imaging with Iodine-124-labeled anti-CA19-9 mAb demonstrated an average tumor to blood ratio of 5 and positive to negative tumor ratio of 20. Conclusion. We show in vivo targeting of our antigen positive xenograft with a radiolabeled anti-CA19-9 antibody. These data demonstrate the potential to achieve anti-CA19-9 antibody based positron emission tomography of pancreas cancer

    The Mass Distributions of Starless and Protostellar Cores in Gould Belt Clouds

    Get PDF
    Using data from the SCUBA Legacy Catalogue (850 um) and Spitzer Space Telescope (3.6 - 70 um), we explore dense cores in the Ophiuchus, Taurus, Perseus, Serpens, and Orion molecular clouds. We develop a new method to discriminate submillimeter cores found by SCUBA as starless or protostellar, using point source photometry from Spitzer wide field surveys. First, we identify infrared sources with red colors associated with embedded young stellar objects (YSOs). Second, we compare the positions of these YSO-candidates to our submillimeter cores. With these identifications, we construct new, self-consistent starless and protostellar core mass functions (CMFs) for the five clouds. We find best fit slopes to the high-mass end of the CMFs of -1.26 +/- 0.20, -1.22 +/- 0.06, -0.95 +/- 0.20, and -1.67 +/- 0.72 for Ophiuchus, Taurus, Perseus, and Orion, respectively. Broadly, these slopes are each consistent with the -1.35 power-law slope of the Salpeter IMF at higher masses, but suggest some differences. We examine a variety of trends between these CMF shapes and their parent cloud properties, potentially finding a correlation between the high-mass slope and core temperature. We also find a trend between core mass and effective size, but we are very limited by sensitivity. We make similar comparisons between core mass and size with visual extinction (for A_V >= 3) and find no obvious trends. We also predict the numbers and mass distributions of cores that future surveys with SCUBA-2 may detect in each of these clouds.Comment: 56 pages, 18 figures, fixed typo in Eq 1, results in paper remain unchange

    Prehospital randomised assessment of a mechanical compression device in cardiac arrest (PaRAMeDIC) trial protocol

    Get PDF
    Background Survival after out-of-hospital cardiac arrest is closely linked to the quality of CPR, but in real life, resuscitation during pre-hospital care and ambulance transport is often suboptimal. Mechanical chest compression devices deliver consistent chest compressions, are not prone to fatigue and could potentially overcome some of the limitations of manual chest compression. However, there is no high-quality evidence that they improve clinical outcomes, or that they are cost effective. The Pre-hospital Randomised Assessment of a Mechanical Compression Device In Cardiac Arrest (PARAMEDIC) trial is a pragmatic cluster randomised study of the LUCAS-2 device in adult patients with non-traumatic out-of-hospital cardiac arrest. Methods The primary objective of this trial is to evaluate the effect of chest compression using LUCAS-2 on mortality at 30 days post out-of-hospital cardiac arrest, compared with manual chest compression. Secondary objectives of the study are to evaluate the effects of LUCAS-2 on survival to 12 months, cognitive and quality of life outcomes and cost-effectiveness. Methods: Ambulance service vehicles will be randomised to either manual compression (control) or LUCAS arms. Adult patients in out-of-hospital cardiac arrest, attended by a trial vehicle will be eligible for inclusion. Patients with traumatic cardiac arrest or who are pregnant will be excluded. The trial will recruit approximately 4000 patients from England, Wales and Scotland. A waiver of initial consent has been approved by the Research Ethics Committees. Consent will be sought from survivors for participation in the follow-up phase. Conclusion The trial will assess the clinical and cost effectiveness of the LUCAS-2 mechanical chest compression device. Trial Registration: The trial is registered on the International Standard Randomised Controlled Trial Number Registry (ISRCTN08233942)
    corecore