527 research outputs found

    The coregulator Alien

    Get PDF
    Alien has characteristics of a corepressor for selected members of the nuclear hormone receptor (NHR) superfamily and also for transcription factors involved in cell cycle regulation and DNA repair. Alien mediates gene silencing and represses the transactivation of specific NHRs and other transcription factors to modulate hormone response and cell proliferation. Alien is a highly conserved protein and is expressed in a wide variety of tissues. Knockout of the gene encoding Alien in mice is embryonic lethal at a very early stage, indicating an important evolutionary role in multicellular organisms. From a mechanistic perspective, the corepressor function of Alien is in part mediated by histone deacetylase (HDAC) activity. In addition, Alien seems to modulate nucleosome assembly activity. This suggests that Alien is acting on chromatin not only through recruitment of histone-modifying activities, but also through enhancing nucleosome assembly

    SIRT1 decreases Lox-1-mediated foam cell formation in atherogenesis

    Get PDF
    Aims Endothelial activation, macrophage infiltration, and foam cell formation are pivotal steps in atherogenesis. Our aim in this study was to analyse the role of SIRT1, a class III deacetylase with important metabolic functions, in plaque macrophages and atherogenesis. Methods and results Using partial SIRT1 deletion in atherosclerotic mice, we demonstrate that SIRT1 protects against atherosclerosis by reducing macrophage foam cell formation. Peritoneal macrophages from heterozygous SIRT1 mice accumulate more oxidized low-density lipoprotein (oxLDL), thereby promoting foam cell formation. Bone marrow-restricted SIRT1 deletion confirmed that SIRT1 function in macrophages is sufficient to decrease atherogenesis. Moreover, we show that SIRT1 reduces the uptake of oxLDL by diminishing the expression of lectin-like oxLDL receptor-1 (Lox-1) via suppression of the NF-κB signalling pathway. Conclusion Our findings demonstrate protective effects of SIRT1 in atherogenesis and suggest pharmacological SIRT1 activation as a novel anti-atherosclerotic strategy by reducing macrophage foam cell formatio

    SIRT1 decreases Lox-1-mediated foam cell formation in atherogenesis

    Get PDF
    Aims Endothelial activation, macrophage infiltration, and foam cell formation are pivotal steps in atherogenesis. Our aim in this study was to analyse the role of SIRT1, a class III deacetylase with important metabolic functions, in plaque macrophages and atherogenesis. Methods and results Using partial SIRT1 deletion in atherosclerotic mice, we demonstrate that SIRT1 protects against atherosclerosis by reducing macrophage foam cell formation. Peritoneal macrophages from heterozygous SIRT1 mice accumulate more oxidized low-density lipoprotein (oxLDL), thereby promoting foam cell formation. Bone marrow-restricted SIRT1 deletion confirmed that SIRT1 function in macrophages is sufficient to decrease atherogenesis. Moreover, we show that SIRT1 reduces the uptake of oxLDL by diminishing the expression of lectin-like oxLDL receptor-1 (Lox-1) via suppression of the NF-kappaB signalling pathway. Conclusion Our findings demonstrate protective effects of SIRT1 in atherogenesis and suggest pharmacological SIRT1 activation as a novel anti-atherosclerotic strategy by reducing macrophage foam cell formation

    A role for neuronal cAMP responsive-element binding (CREB)-1 in brain responses to calorie restriction

    Get PDF
    Calorie restriction delays brain senescence and prevents neurodegeneration, but critical regulators of these beneficial responses other than the NAD(+)-dependent histone deacetylase Sirtuin-1 (Sirt-1) are unknown. We report that effects of calorie restriction on neuronal plasticity, memory and social behavior are abolished in mice lacking cAMP responsive-element binding (CREB)-1 in the forebrain. Moreover, CREB deficiency drastically reduces the expression of Sirt-1 and the induction of genes relevant to neuronal metabolism and survival in the cortex and hippocampus of dietary-restricted animals. Biochemical studies reveal a complex interplay between CREB and Sirt-1: CREB directly regulates the transcription of the sirtuin in neuronal cells by binding to Sirt-1 chromatin; Sirt-1, in turn, is recruited by CREB to DNA and promotes CREB-dependent expression of target gene peroxisome proliferator-activated receptor-\u3b3 coactivator-1\u3b1 and neuronal NO Synthase. Accordingly, expression of these CREB targets is markedly reduced in the brain of Sirt KO mice that are, like CREB-deficient mice, poorly responsive to calorie restriction. Thus, the above circuitry, modulated by nutrient availability, links energy metabolism with neurotrophin signaling, participates in brain adaptation to nutrient restriction, and is potentially relevant to accelerated brain aging by overnutrition and diabetes

    WldS Reduces Paraquat-Induced Cytotoxicity via SIRT1 in Non-Neuronal Cells by Attenuating the Depletion of NAD

    Get PDF
    WldS is a fusion protein with NAD synthesis activity, and has been reported to protect axonal and synaptic compartments of neurons from various mechanical, genetic and chemical insults. However, whether WldS can protect non-neuronal cells against toxic chemicals is largely unknown. Here we found that WldS significantly reduced the cytotoxicity of bipyridylium herbicides paraquat and diquat in mouse embryonic fibroblasts, but had no effect on the cytotoxicity induced by chromium (VI), hydrogen peroxide, etoposide, tunicamycin or brefeldin A. WldS also slowed down the death of mice induced by intraperitoneal injection of paraquat. Further studies demonstrated that WldS markedly attenuated mitochondrial injury including disruption of mitochondrial membrane potential, structural damage and decline of ATP induced by paraquat. Disruption of the NAD synthesis activity of WldS by an H112A or F116S point mutation resulted in loss of its protective function against paraquat-induced cell death. Furthermore, WldS delayed the decrease of intracellular NAD levels induced by paraquat. Similarly, treatment with NAD or its precursor nicotinamide mononucleotide attenuated paraquat-induced cytotoxicity and decline of ATP and NAD levels. In addition, we showed that SIRT1 was required for both exogenous NAD and WldS-mediated cellular protection against paraquat. These findings suggest that NAD and SIRT1 mediate the protective function of WldS against the cytotoxicity induced by paraquat, which provides new clues for the mechanisms underlying the protective function of WldS in both neuronal and non-neuronal cells, and implies that attenuation of NAD depletion may be effective to alleviate paraquat poisoning

    CD133 Positive Embryonal Rhabdomyosarcoma Stem-Like Cell Population Is Enriched in Rhabdospheres

    Get PDF
    Cancer stem cells (CSCs) have been identified in a number of solid tumors, but not yet in rhabdomyosarcoma (RMS), the most frequently occurring soft tissue tumor in childhood. Hence, the aim of this study was to identify and characterize a CSC population in RMS using a functional approach. We found that embryonal rhabdomyosarcoma (eRMS) cell lines can form rhabdomyosarcoma spheres (short rhabdospheres) in stem cell medium containing defined growth factors over several passages. Using an orthotopic xenograft model, we demonstrate that a 100 fold less sphere cells result in faster tumor growth compared to the adherent population suggesting that CSCs were enriched in the sphere population. Furthermore, stem cell genes such as oct4, nanog, c-myc, pax3 and sox2 are significantly upregulated in rhabdospheres which can be differentiated into multiple lineages such as adipocytes, myocytes and neuronal cells. Surprisingly, gene expression profiles indicate that rhabdospheres show more similarities with neuronal than with hematopoietic or mesenchymal stem cells. Analysis of these profiles identified the known CSC marker CD133 as one of the genes upregulated in rhabdospheres, both on RNA and protein levels. CD133+ sorted cells were subsequently shown to be more tumorigenic and more resistant to commonly used chemotherapeutics. Using a tissue microarray (TMA) of eRMS patients, we found that high expression of CD133 correlates with poor overall survival. Hence, CD133 could be a prognostic marker for eRMS. These experiments indicate that a CD133+ CSC population can be enriched from eRMS which might help to develop novel targeted therapies against this pediatric tumor

    Phosphorylation Regulates SIRT1 Function

    Get PDF
    BACKGROUND: SIR2 is an NAD(+)-dependent deacetylase [1]-[3] implicated in the regulation of lifespan in species as diverse as yeast [4], worms [5], and flies [6]. We previously reported that the level of SIRT1, the mammalian homologue of SIR2 [7], [8], is coupled to the level of mitotic activity in cells both in vitro and in vivo[9]. Cells from long-lived mice maintained SIRT1 levels of young mice in tissues that undergo continuous cell replacement by proliferating stem cells. Changes in SIRT1 protein level were not associated with changes in mRNA level, suggesting that SIRT1 could be regulated post-transcriptionally. However, other than a recent report on sumoylation [10] and identification of SIRT1 as a nuclear phospho-protein by mass spectrometry [11], post-translational modifications of this important protein have not been reported. METHODOLOGY/PRINCIPAL FINDINGS: We identified 13 residues in SIRT1 that are phosphorylated in vivo using mass spectrometry. Dephosphorylation by phosphatases in vitro resulted in decreased NAD(+)-dependent deacetylase activity. We identified cyclinB/Cdk1 as a cell cycle-dependent kinase that forms a complex with and phosphorylates SIRT1. Mutation of two residues phosphorylated by Cyclin B/Cdk1 (threonine 530 and serine 540) disturbs normal cell cycle progression and fails to rescue proliferation defects in SIRT1-deficient cells [12], [13]. CONCLUSIONS/SIGNIFICANCE: Pharmacological manipulation of SIRT1 activity is currently being tested as a means of extending lifespan in mammals. Treatment of obese mice with resveratrol, a pharmacological activator of SIRT1, modestly but significantly improved longevity and, perhaps more importantly, offered some protection against the development of type 2 diabetes mellitus and metabolic syndrome [14]-[16]. Understanding the endogenous mechanisms that regulate the level and activity of SIRT1, therefore, has obvious relevance to human health and disease. Our results identify phosphorylation by cell cycle dependent kinases as a major mechanism controlling the level and function of this sirtuin and complement recent reports of factors that inhibit [17], [18] and activate [19] SIRT1 by protein-protein interactions

    Change in basic motor abilities, quality of movement and everyday activities following intensive, goal-directed, activity-focused physiotherapy in a group setting for children with cerebral palsy

    Get PDF
    Background: The effects of intensive training for children with cerebral palsy (CP) remain uncertain. The aim of the study was to investigate the impact on motor function, quality of movements and everyday activities of three hours of goal-directed activity-focused physiotherapy in a group setting, five days a week for a period of three weeks. Methods: A repeated measures design was applied with three baseline and two follow up assessments; immediately and three weeks after intervention. Twenty-two children with hemiplegia (n = 7), diplegia (n = 11), quadriplegia (n = 2) and ataxia (n = 2) participated, age ranging 3-9 y. All levels of Gross Motor Function Classification System (GMFCS) and Manual Ability Classification System (MACS) were represented. Parents and professionals participated in goal setting and training. ANOVA was used to analyse change over repeated measures. Results: A main effect of time was shown in the primary outcome measure; Gross Motor Function Measure-66 (GMFM- 66), mean change being 4.5 (p < 0.01) from last baseline to last follow up assessment. An interaction between time and GMFCS-levels was found, implying that children classified to GMFCS-levels I-II improved more than children classified to levels III-V. There were no main or interaction effects of age or anti-spastic medication. Change scores in the Pediatric Evaluation of Disability Inventory (PEDI) ranged 2.0-6.7, p < 0.01 in the Self-care domain of the Functional Skills dimension, and the Self-care and Mobility domains of the Caregiver Assistance dimension. The children's individual goals were on average attained, Mean Goal Attainment Scaling (GAS) T-score being 51.3. Non-significant improved scores on the Gross Motor Performance Measure (GMPM) and the Quality of Upper Extremities Skills Test (QUEST) were demonstrated. Significant improvement in GMPM scores were found in improved items of the GMFM, not in items that maintained the same score. Conclusions: Basic motor abilities and self-care improved in young children with CP after goal-directed activityfocused physiotherapy with involvement of their local environment, and their need for caregiver assistance in self-care and mobility decreased. The individualized training within a group context during a limited period of time was feasible and well-tolerated. The coherence between acquisition of basic motor abilities and quality of movement should be further examined
    corecore