23 research outputs found

    Old stones' song: Use-wear experiments and analysis of the Oldowan quartz and quartzite assemblage from Kanjera South (Kenya)

    Get PDF
    Evidence of Oldowan tools by w2.6 million years ago (Ma) may signal a major adaptive shift in hominin evolution. While tool-dependent butchery of large mammals was important by at least 2.0 Ma, the use of artifacts for tasks other than faunal processing has been difficult to diagnose. Here we report on use-wear analysis ofw2.0 Ma quartz and quartzite artifacts from Kanjera South, Kenya. A use-wear framework that links processing of specific materials and tool motions to their resultant use-wear patterns was developed. A blind test was then carried out to assess and improve the efficacy of this experimental use-wear framework, which was then applied to the analysis of 62 Oldowan artifacts from Kanjera South. Usewear on a total of 23 artifact edges was attributed to the processing of specific materials. Use-wear on seven edges (30%) was attributed to animal tissue processing,corroborating zooarchaeological evidence for butchery at the site. Use-wear on 16 edges (70%)was attributed to the processing of plant tissues, including wood, grit-covered plant tissues that we interpret asunderground storage organs (USOs), and stems of grass or sedges. These results expand our knowledge of the suite of behaviours carried out in the vicinity of Kanjera South to include the processing of materials that would be ‘invisible’ using standard archaeological methods. Wood cutting and scraping may represent the production and/or maintenance of wooden tools. Use-wear related to USO processing extends the archaeological evidence for hominin acquisition and consumption of this resource by over 1.5 Ma. Cutting of grasses, sedges or reeds may be related to a subsistence task (e.g., grass seed harvesting, cutting out papyrus culm for consumption) and/or a non-subsistence related task (e.g., production of ‘twine,’ simple carrying devices, or bedding). These results highlight the adaptive significance of lithic technology for hominins at Kanjera

    Dimethyl fumarate in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial

    Get PDF
    Dimethyl fumarate (DMF) inhibits inflammasome-mediated inflammation and has been proposed as a treatment for patients hospitalised with COVID-19. This randomised, controlled, open-label platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]), is assessing multiple treatments in patients hospitalised for COVID-19 (NCT04381936, ISRCTN50189673). In this assessment of DMF performed at 27 UK hospitals, adults were randomly allocated (1:1) to either usual standard of care alone or usual standard of care plus DMF. The primary outcome was clinical status on day 5 measured on a seven-point ordinal scale. Secondary outcomes were time to sustained improvement in clinical status, time to discharge, day 5 peripheral blood oxygenation, day 5 C-reactive protein, and improvement in day 10 clinical status. Between 2 March 2021 and 18 November 2021, 713 patients were enroled in the DMF evaluation, of whom 356 were randomly allocated to receive usual care plus DMF, and 357 to usual care alone. 95% of patients received corticosteroids as part of routine care. There was no evidence of a beneficial effect of DMF on clinical status at day 5 (common odds ratio of unfavourable outcome 1.12; 95% CI 0.86-1.47; p = 0.40). There was no significant effect of DMF on any secondary outcome

    Population increase and environmental deterioration correspond with microlithic innovations in South Asia ca. 35,000 years ago

    No full text
    Genetic studies of South Asia's population history have led to postulations of a significant and early population expansion in the subcontinent, dating to sometime in the Late Pleistocene. We evaluate this argument, based on new mtDNA analyses, and find evidence for significant demographic transition in the subcontinent, dating to 35–28 ka. We then examine the paleoenvironmental and, particularly, archaeological records for this time period and note that this putative demographic event coincides with a period of ecological and technological change in South Asia. We document the development of a new diminutive stone blade (microlithic) technology beginning at 35–30 ka, the first time that the precocity of this transition has been recognized across the subcontinent. We argue that the transition to microlithic technology may relate to changes in subsistence practices, as increasingly large and probably fragmented populations exploited resources in contracting favorable ecological zones just before the onset of full glacial conditions
    corecore