78 research outputs found

    Investigating how faculty social networks and peer influence relate to knowledge and use of evidence-based teaching practices

    Get PDF
    Background: Calls for science education reform have been made for decades in the USA. The recent call to produce one million new science, technology, engineering, and math (STEM) graduates over 10 years highlights the need to employ evidence-based instructional practices (EBIPs) in undergraduate STEM classes to create engaging and effective learning environments. EBIPs are teaching strategies that have been empirically demonstrated to positively impact student learning, attitudes, and achievement in STEM disciplines. However, the mechanisms and processes by which faculty learn about and choose to implement EBIPs remain unclear. To explore this problem area, we used social network analysis to examine how an instructor’s knowledge and use of EBIPs may be influenced by their peers within a STEM department. We investigated teaching discussion networks in biology and chemistry departments at three public universities. Results: We report that tie strength and tie diversity vary between departments, but that mean indegree is not correlated with organizational rank or tenure status. We also describe that teaching discussion ties can often be characterized as strong ties based on two measures of tie strength. Further, we compare peer influence models and find consistent evidence that peer influence in these departments follows a network disturbances model. Conclusions: Our findings with respect to tie strength and tie diversity indicate that the social network structures in these departments vary in how conducive they might be to change. The correlation in teaching practice between discussion partner and peer influence models suggest that change agents should consider local social network characteristics when developing change strategies. In particular, change agents can expect that faculty may serve as opinion leaders regardless of their academic rank and that faculty can increase their use of EBIPs even if those they speak to about teaching use EBIPs comparatively less

    Force-velocity relation and density profiles for biased diffusion in an adsorbed monolayer

    Full text link
    In this paper, which completes our earlier short publication [Phys. Rev. Lett. 84, 511 (2000)], we study dynamics of a hard-core tracer particle (TP) performing a biased random walk in an adsorbed monolayer, composed of mobile hard-core particles undergoing continuous exchanges with a vapor phase. In terms of an approximate approach, based on the decoupling of the third-order correlation functions, we obtain the density profiles of the monolayer particles around the TP and derive the force-velocity relation, determining the TP terminal velocity, V_{tr}, as the function of the magnitude of external bias and other system's parameters. Asymptotic forms of the monolayer particles density profiles at large separations from the TP, and behavior of V_{tr} in the limit of small external bias are found explicitly.Comment: Latex, 31 pages, 3 figure

    Electrochemical and Photoelectrochemical Investigation of Water Oxidation with Hematite Electrodes

    Get PDF
    Atomic layer deposition (ALD) was utilized to deposit uniform thin films of hematite (α-Fe2O3) on transparent conductive substrates for photocatalytic water oxidation studies. Comparison of the oxidation of water to the oxidation of a fast redox shuttle allowed for new insight in determining the rate limiting processes of water oxidation at hematite electrodes. It was found that an additional overpotential is needed to initiate water oxidation compared to the fast redox shuttle. A combination of electrochemical impedance spectroscopy, photoelectrochemical and electrochemical measurements were employed to determine the cause of the additional overpotential. It was found that photogenerated holes initially oxidize the electrode surface under water oxidation conditions, which is attributed to the first step in water oxidation. A critical number of these surface intermediates need to be generated in order for the subsequent hole-transfer steps to proceed. At higher applied potentials, the behavior of the electrode is virtually identical while oxidizing either water or the fast redox shuttle; the slight discrepancy is attributed to a shift in potential associated with Fermi level pinning by the surface states in the absence of a redox shuttle. A water oxidation mechanism is proposed to interpret these results

    Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry Identification of Mycobacteria in Routine Clinical Practice

    Get PDF
    Background: Non-tuberculous mycobacteria recovered from respiratory tract specimens are emerging confounder organisms for the laboratory diagnosis of tuberculosis worldwide. There is an urgent need for new techniques to rapidly identify mycobacteria isolated in clinical practice. Matrix-assisted laser desorption time-of-flight mass spectrometry (MALDI-TOF MS) has previously been proven to effectively identify mycobacteria grown in high-concentration inocula from collections. However, a thorough evaluation of its use in routine laboratory practice has not been performed. Methodology: We set up an original protocol for the MALDI-TOF MS identification of heat-inactivated mycobacteria after dissociation in Tween-20, mechanical breaking of the cell wall and protein extraction with formic acid and acetonitrile. By applying this protocol to as few as 10 5 colony-forming units of reference isolates of Mycobacterium tuberculosis, Mycobacterium avium, and 20 other Mycobacterium species, we obtained species-specific mass spectra for the creation of a local database. Using this database, our protocol enabled the identification by MALDI-TOF MS of 87 M. tuberculosis, 25M. avium and 12 non-tuberculosis clinical isolates with identification scores $2 within 2.5 hours. Conclusions: Our data indicate that MALDI-TOF MS can be used as a first-line method for the routine identification of heatinactivated mycobacteria. MALDI-TOF MS is an attractive method for implementation in clinical microbiology laboratories i

    Peasants' Choices? Indian Agriculture and the Limits of Commercialization in Nineteenth-Century Bihar

    Get PDF
    The article attempts to distinguish and locate choices in agricultural production, with special reference to Bihar, India, during the nineteenth century. On the one hand, it considers closely managed and extensively irrigated areas, long involved in trade under the overall control of 'landlords', and, on the other hand, the expanding production of opium, and also of indigo and sugar (so-called 'forced' commercialization), identifying common features and continuities of production and marketing. Particular the importance of advance payments and local intermediaries is stressed. Thus, in contrast with the more usual evolutionary models, based on unitary categories and modes, the essay illustrates ecological, customary, collective, and local political constraints upon agricultural decisions; and this leads to the identification in turn of their different kinds and levels

    Investigating how faculty social networks and peer influence relate to knowledge and use of evidence-based teaching practices

    Get PDF
    Background: Calls for science education reform have been made for decades in the USA. The recent call to produce one million new science, technology, engineering, and math (STEM) graduates over 10 years highlights the need to employ evidence-based instructional practices (EBIPs) in undergraduate STEM classes to create engaging and effective learning environments. EBIPs are teaching strategies that have been empirically demonstrated to positively impact student learning, attitudes, and achievement in STEM disciplines. However, the mechanisms and processes by which faculty learn about and choose to implement EBIPs remain unclear. To explore this problem area, we used social network analysis to examine how an instructor’s knowledge and use of EBIPs may be influenced by their peers within a STEM department. We investigated teaching discussion networks in biology and chemistry departments at three public universities. Results: We report that tie strength and tie diversity vary between departments, but that mean indegree is not correlated with organizational rank or tenure status. We also describe that teaching discussion ties can often be characterized as strong ties based on two measures of tie strength. Further, we compare peer influence models and find consistent evidence that peer influence in these departments follows a network disturbances model. Conclusions: Our findings with respect to tie strength and tie diversity indicate that the social network structures in these departments vary in how conducive they might be to change. The correlation in teaching practice between discussion partner and peer influence models suggest that change agents should consider local social network characteristics when developing change strategies. In particular, change agents can expect that faculty may serve as opinion leaders regardless of their academic rank and that faculty can increase their use of EBIPs even if those they speak to about teaching use EBIPs comparatively less

    Investigating how faculty social networks and peer influence relate to knowledge and use of evidence-based teaching practices

    Get PDF
    Background: Calls for science education reform have been made for decades in the USA. The recent call to produce one million new science, technology, engineering, and math (STEM) graduates over 10 years highlights the need to employ evidence-based instructional practices (EBIPs) in undergraduate STEM classes to create engaging and effective learning environments. EBIPs are teaching strategies that have been empirically demonstrated to positively impact student learning, attitudes, and achievement in STEM disciplines. However, the mechanisms and processes by which faculty learn about and choose to implement EBIPs remain unclear. To explore this problem area, we used social network analysis to examine how an instructor’s knowledge and use of EBIPs may be influenced by their peers within a STEM department. We investigated teaching discussion networks in biology and chemistry departments at three public universities. Results: We report that tie strength and tie diversity vary between departments, but that mean indegree is not correlated with organizational rank or tenure status. We also describe that teaching discussion ties can often be characterized as strong ties based on two measures of tie strength. Further, we compare peer influence models and find consistent evidence that peer influence in these departments follows a network disturbances model. Conclusions: Our findings with respect to tie strength and tie diversity indicate that the social network structures in these departments vary in how conducive they might be to change. The correlation in teaching practice between discussion partner and peer influence models suggest that change agents should consider local social network characteristics when developing change strategies. In particular, change agents can expect that faculty may serve as opinion leaders regardless of their academic rank and that faculty can increase their use of EBIPs even if those they speak to about teaching use EBIPs comparatively less

    Investigating how faculty social networks and peer influence relate to knowledge and use of evidence-based teaching practices

    No full text
    Background: Calls for science education reform have been made for decades in the USA. The recent call to produce one million new science, technology, engineering, and math (STEM) graduates over 10 years highlights the need to employ evidence-based instructional practices (EBIPs) in undergraduate STEM classes to create engaging and effective learning environments. EBIPs are teaching strategies that have been empirically demonstrated to positively impact student learning, attitudes, and achievement in STEM disciplines. However, the mechanisms and processes by which faculty learn about and choose to implement EBIPs remain unclear. To explore this problem area, we used social network analysis to examine how an instructor’s knowledge and use of EBIPs may be influenced by their peers within a STEM department. We investigated teaching discussion networks in biology and chemistry departments at three public universities. Results: We report that tie strength and tie diversity vary between departments, but that mean indegree is not correlated with organizational rank or tenure status. We also describe that teaching discussion ties can often be characterized as strong ties based on two measures of tie strength. Further, we compare peer influence models and find consistent evidence that peer influence in these departments follows a network disturbances model. Conclusions: Our findings with respect to tie strength and tie diversity indicate that the social network structures in these departments vary in how conducive they might be to change. The correlation in teaching practice between discussion partner and peer influence models suggest that change agents should consider local social network characteristics when developing change strategies. In particular, change agents can expect that faculty may serve as opinion leaders regardless of their academic rank and that faculty can increase their use of EBIPs even if those they speak to about teaching use EBIPs comparatively less
    • …
    corecore