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Investigating how faculty social networks
and peer influence relate to knowledge
and use of evidence-based teaching
practices
A. K. Lane1, J. Skvoretz2* , J. P. Ziker3, B. A. Couch1, B. Earl4, J. E. Lewis5, J. D. McAlpin5, L. B. Prevost6,
S. E. Shadle7 and M. Stains8

Abstract

Background: Calls for science education reform have been made for decades in the USA. The recent call to
produce one million new science, technology, engineering, and math (STEM) graduates over 10 years highlights the
need to employ evidence-based instructional practices (EBIPs) in undergraduate STEM classes to create engaging
and effective learning environments. EBIPs are teaching strategies that have been empirically demonstrated to
positively impact student learning, attitudes, and achievement in STEM disciplines. However, the mechanisms and
processes by which faculty learn about and choose to implement EBIPs remain unclear. To explore this problem
area, we used social network analysis to examine how an instructor’s knowledge and use of EBIPs may be
influenced by their peers within a STEM department. We investigated teaching discussion networks in biology and
chemistry departments at three public universities.

Results: We report that tie strength and tie diversity vary between departments, but that mean indegree is not
correlated with organizational rank or tenure status. We also describe that teaching discussion ties can often be
characterized as strong ties based on two measures of tie strength. Further, we compare peer influence models
and find consistent evidence that peer influence in these departments follows a network disturbances model.

Conclusions: Our findings with respect to tie strength and tie diversity indicate that the social network structures
in these departments vary in how conducive they might be to change. The correlation in teaching practice
between discussion partner and peer influence models suggest that change agents should consider local social
network characteristics when developing change strategies. In particular, change agents can expect that faculty
may serve as opinion leaders regardless of their academic rank and that faculty can increase their use of EBIPs even
if those they speak to about teaching use EBIPs comparatively less.

Keywords: Faculty change, Social network analysis, Peer influence models, STEM reform, Institutional change,
Undergraduate
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Introduction
Calls for science education reform in the USA have been
made for decades. A recent call for universities to
produce one million additional college graduates with
degrees in science, technology, engineering, and math-
ematics (STEM) by 2022 puts significant pressure on
institutions to implement successful instructional strat-
egies throughout the undergraduate curriculum but
especially in the large gateway courses, where the reten-
tion rates are typically low (President’s Council of
Advisors on Science and Technology, 2012). Reform
efforts aim to promote the widespread adoption of evi-
dence-based instructional practices (EBIPs) by college
and university faculty. EBIPs are instructional strategies
and methods that have been empirically demonstrated
to impact student learning, attitudes, and achievement
in STEM disciplines, with especially large gains shown
for students from underrepresented groups (Daempfle,
2006; Handelsman et al., 2004; Handelsman, Miller, &
Pfund, 2006; Schroeder, Scott, Tolson, Huang, & Lee,
2007; Wise & Okey, 1983). Despite their promise, EBIPs
have not become the predominant teaching mode (Bor-
rego, Froyd, & Hall, 2010; Durham, Knight, & Couch,
2017; Henderson & Dancy, 2009; Stains et al., 2018).
Among the issues affecting implementation, higher

education lacks proven models and frameworks for cata-
lyzing change (Henderson, Beach, & Finkelstein, 2011),
reflecting a gap in understanding of how to shift faculty
practice toward crafting learning environments that in-
clude EBIPs. Research on barriers to changing teaching
practices shows the process to be a complex interplay
between personal and contextual factors (Andrews &
Lemons, 2015; Austin, 2011; Brownell & Tanner, 2012;
Gess-Newsome, Southerland, Johnston, & Woodbury,
2003; Henderson & Dancy, 2007; Lund & Stains, 2015;
Shadle, Marker, & Earl, 2017).
Faculty social networks represent one factor that has

been hypothesized to influence change (Kezar, 2014;
Quardokus & Henderson, 2015). Indeed, networks of
interpersonal relationships are thought to facilitate the
spread of ideas and affect individual decisions to change
behaviors (Banerjee, Chandrasekhar, Duflo, & Jackson,
2013; Harrison, Sciberras, & James, 2011; Kezar, 2014).
Changes often involve risk-taking, and being part of a
network can buffer such risks if others are willing to
share costs and benefits (Valente, 1995). Studies also
suggest a connection between what an individual learns
through a change effort and the strength of the social
relationships (i.e., ties) in that individual’s network
(Tenkasi & Chesmore, 2003). If faculty are not effectively
connected to each other or if the networks do not enable
communication and support for teaching, educational
reforms may not easily be initiated and implemented
(Kezar, 2014). Peers can play as much of a role in a

person’s decision to engage in the change process as
organizational norms (Kezar, 2014). Furthermore, a
strong relationship exists between the social network
characteristics of a system targeted by change efforts
and the impact of the change efforts (Kezar, 2014).
For the use of EBIPs to be widespread and sustained,

change efforts must move beyond dissemination of ideas
and instead target relevant environments and structures
that relate to behaviors (e.g., Henderson et al., 2019;
Henderson & Dancy, 2007; Henderson, Dancy, & Niewia-
domska-Bugaj, 2012; Pollock & Finkelstein, 2008). Depart-
ment social networks represent important structures that
can potentially be leveraged to influence behaviors and en-
vironments (Henderson et al., 2019). In the USA, depart-
ments often serve as the primary arenas for change efforts
because they are relatively independent, contain their own
organizational structures, play a central role in promotion
decisions, and harbor significant social interaction (AAAS,
2011; Edwards, 1999; Henderson et al., 2019; Wieman,
Perkins, & Gilbert, 2010).
The K-12 literature recognizes social networks as an

important component in educational change (Daly,
2010; Henderson et al., 2019), but STEM education re-
searchers have only recently applied social network ana-
lyses at the postsecondary level (e.g., Andrews, Conaway,
Zhao, & Dolan, 2016; Knaub, Henderson, & Quardokus
Fisher, 2018; Ma, Herman, Tomkin, Mestre, & West,
2018; Mestre, Herman, Tomkin, & West, 2019; Quardo-
kus & Henderson, 2015). These studies describe social
networks within and across STEM departments and
identify leaders of instructional change, often referred to
as change agents. For example, Quardokus and Hender-
son (2015) collected surveys to characterize faculty
teaching networks within five science departments at
one institution. They used these data to introduce and
illustrate how certain social network measures can in-
form instructional change initiatives. In a second study,
Andrews et al. (2016) examined teaching networks in
four life-sciences departments by conducting surveys
and follow-up interviews. Their goal was to characterize
who was talking to whom about teaching (i.e., ties) and
the content of these conversations. They reported that
interactions about undergraduate teaching were uncom-
mon in the departments studied. Less than half of the
respondents reported such interactions with more than
one colleague monthly. Furthermore, discipline-based
education research (DBER) faculty were overrepresented
as resource providers (e.g., provided instructional mate-
rials, social support, feedback, information) and change
agents. In a third study, Knaub et al. (2018) contrasted
two methods for identifying leaders of STEM education
reform. The first method had respondents nominate
individuals as current or potential leaders in STEM re-
form. A person was identified as a leader if they receive
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two or more nominations. The second method used net-
work metrics of a person’s position in a teaching discus-
sion network to identify whether someone is a leader.
Respondents were faculty members at a large compre-
hensive doctoral institution in six departments surveyed
multiple times. The authors found that respondent
nominations yielded a different set of leaders than social
network analysis (SNA) and concluded that facilitators
of change initiatives should use multiple methods for
identifying leaders.
Additional studies of two STEM education reform

efforts focused on the social networks that emerge from
deliberate communities of practice (CoP). Ma et al. (2018)
and Mestre et al. (2019) showed that mentors who served
as leaders of CoPs played a key bridging role in connecting
faculty in conversation and collaboration around teaching.
Further, the CoPs that more effectively supported the
adoption of EBIPs included all CoP members in conversa-
tion but that a few core participants drove the adoption of
new teaching approaches (Ma et al., 2018).
Finally, Quardokus Fisher and Apkarian performed a

reanalysis of data collected across three studies consist-
ing of 22 STEM departments using a social capital and
social network lens (Quardokus Fisher & Apkarian,
2019). While data collection methods differed in the ori-
ginal three reference studies, the authors took steps to
filter and process the data in ways that enabled them to
make comparisons. This reanalysis reported on the ways
in which departments show variability across a range of
social network attributes related to teaching and
learning, including tie density, connectedness, and tie
distribution. Additionally, they highlighted how some
departments had prominent central actors, while others
had ties that were more evenly distributed. Finally, the
authors provided case study descriptions of how the
social network characteristics of two departments can
inform change agents and reform efforts.
These descriptive studies broadly demonstrate how

SNA can inform the design and implementation of
change initiatives. Ma et al. (2018) suggest that programs
successfully supporting EBIP adoption must promote
both bridging ties and strong ties in the network. How
EBIP adoption spreads in the absence of such a specially
structured program remains unclear. Thus, there is still
much to explore about how teaching innovations such
as EBIPs propagate through networks.

Social networks and institutional change in higher
education
Kezar’s (2014) extensive review of the change-related
SNA literature identifies a series of social network char-
acteristics hypothesized to be important for change in
higher education. Here, we describe three predictions

concerning social network characteristics investigated in
the current study.
First, Kezar (2014) predicts that on-campus networks

will primarily contain weak and diffuse ties (Fig. 1),
which she proposes can impede change. According to
Granovetter, tie strength reflects a “combination of the
amount of time, the emotional intensity, the intimacy
(mutual confiding) and reciprocal services which
characterize the tie” (Granovetter, 1973, p. 1361). Pet-
róczi, Nepusz, and Bazsó (2007) provide a comprehen-
sive review of the indicators of tie strength, two of which
can be used with data collected for the current study.
The first is whether a tie is reciprocated between two in-
dividuals. Reciprocated ties are regarded as strong and
unreciprocated ties as weak for the purposes of analysis
(Blumstein & Kollock, 1988; Eckmann & Moses, 2002;
Friedkin, 1980, 1982; Larsen & Lewis, 2017; Mathews,
White, Soper, & von Bergen, 1998; Memic, 2009;
Perlman & Fehr, 1987). The second indicator is whether
a tie is multiplex, that is, does the connection occur only
in one context (uniplex) or in multiple contexts (Basov
& Brennecke, 2017; Blumstein & Kollock, 1988; Marsden
& Campbell, 1984; Perlman & Fehr, 1987). A multiplex
tie is viewed as stronger than a uniplex tie. For example,
faculty might talk about different activities, such as
teaching, research, or departmental affairs. If a faculty
member talks to another about both research and teach-
ing, that could be considered a stronger tie than if they
only speak about teaching. As for Kezar’s position that
weak ties impede change, the literature suggests a more
nuanced picture. Weak ties allow for the introduction of
new ideas because they indicate a less insular network
(Granovetter, 1973); however, strong ties are predicted to
be more likely to promote change because they allow for
the exchange of complex ideas (Balkundi & Harrison,
2006; Kezar, 2014; Tenkasi & Chesmore, 2003). Recent
work by Centola (2018) argues that the spread of a behav-
ior through a network, compared to the spread of infor-
mation, depends more on the clustering driven by strong
ties rather than the bridging provided by weak ties.
The second prediction important to our study is that

Kezar proposes that having a diversity of ties (i.e.,
heterophily, Fig. 1) will promote the dissemination of
new ideas by providing access to new information that
can help solve teaching-related problems. Ties are di-
verse when they connect individuals that have different
characteristics (e.g., men with women, tenure-track fac-
ulty with non-tenure-track faculty). Social ties are often
homophilous, which means they occur disproportion-
ately between individuals who share socially important
characteristics. Sociologists unpack homophily into base-
line homophily and inbreeding homophily (McPherson,
Smith-Lovin, & Cook, 2001, p. 419). Baseline homophily
is the proportion of ties that are expected between
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individuals that share an attribute (i.e., ingroup ties)
based on the frequency of that attribute within the net-
work. For example, in a network evenly split between
men and women, 50% of all ties would occur by chance
within gender and 50% of the ties between genders.
Inbreeding homophily refers to the excess of ingroup
ties over the baseline expected and is measured by a
“coefficient of inbreeding,” which expresses how much
the proportion of ingroup ties exceeds chance.
Third, Kezar (2014) describes opinion leadership and

high centrality as two characteristics that can affect
change leadership and predicts that opinion leadership is
likely to be more influential than high centrality (cf.
Knaub et al., 2018). Opinion leaders are faculty per-
ceived by others as having influence on their attitudes
and opinions, whereas central actors (i.e., those with
high centrality; Fig. 1) are faculty who have connections
to many others in their organization. In social network
analysis, the two metrics overlap when networks consist
of directed ties. In that case, opinion leadership is often
operationalized in terms of indegree centrality: the intu-
ition is that a person often nominated by others is a key
individual whose opinion counts more than a person
rarely nominated by others. While the two are conflated
within social networks, the extent to which the com-
bined construct is related to higher education is investi-
gated in the current study.

Peer influence models
One way that faculty social networks may be important
to educational change rests on the idea that faculty are
subject to peer influence. If some faculty adopt EBIPs,
the peer influence process could facilitate the spread of
EBIP adoption from these “seeds” to their associated
colleagues. Thus, a change in behavior, specifically the
pedagogical techniques used by faculty, could be
facilitated by leveraging the peer influence process
within faculty networks.
Statistical models for peer influence exist in the social

network literature (Marsden & Friedkin, 1993) and have
been applied in a variety of contexts (Duke, 1993;
Gimpel & Schuknecht, 2003; Mizruchi, Stearns, &
Marquis, 2006; O’Malley & Marsden, 2008). These
models estimate the manner and degree to which net-
work connections affect some outcome variable, such as
knowledge or use of EBIPs. Leenders (2002) provides the
standard reference for peer influence studies in social
network analysis. Within these peer influence models, an
individual’s opinion or behavior depends on the individ-
ual’s own intrinsic characteristics (i.e., covariates) as well
as on their interactions with peers. Here, we explore two
models, which reflect differences in underlying mechan-
ism about how influence occurs. In the “network effects”
model, an individual’s opinion (i.e., knowledge or use of
EBIPs) is based on their own intrinsic opinion

a)

b)

Fig. 1 Social network characteristics. a Type of tie strength and central actor. b Diversity of ties
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(determined by covariate values) as well as the opinions
of those with whom they communicate. In the context
of this study, that would appear as a faculty member’s
(i.e., the individual’s) teaching practices becoming more
like those with whom they discuss teaching. A faculty
member who regularly uses EBIPs would always de-
crease in their use if their discussion partners used
EBIPs less than that faculty member. In the “network
disturbances” model, an individual again has an intrinsic
opinion. However, here, comparison with peers causes
that individual to adjust their behavior based on how
others deviate from expectations, ultimately modifying
their opinion in the same direction that others’ deviate
from that predicted by their covariates. In the context of
this study, faculty members would have a shared
tendency to depart from the opinion predicted by their
attributes, rather than having directly correlated opin-
ions. A faculty who regularly uses EBIPs could increase
their use even when speaking to faculty who had a lower
use of EBIPs as long as the faculty they spoke to deviated
positively from their predicted use.
In the current study, we aimed to test predictions

about the characteristics of faculty social networks
hypothesized to influence instructional change efforts.
We also aimed to explore how a faculty member’s know-
ledge and use of EBIPs relate to the knowledge and use
of their peers. We conducted data collection in biology
and chemistry departments at three large public research
universities in the USA. In particular, we sought to an-
swer the following research questions:

1. What is the frequency and relative strength of ties
among faculty in each of these STEM departments?

2. How diverse are ties among faculty overall and
within STEM fields?

3. Do faculty of higher rank (i.e., potential opinion
leaders by virtue of status) tend to occupy more
central positions across the sample?

4. Does a faculty member’s knowledge and use of
EBIPs correlate with that of their discussion
partners across the sample?

5. What peer influence model best describes the
relationship between faculty social networks and
their teaching practices across the sample?

Methods
Aims, design, and setting
To address our research questions about the role of net-
works in relation to teaching, we developed and used an
online survey to gather data from faculty. The three in-
stitutions are located in different regions of the country
and vary in what teaching development resources are
available to faculty (e.g., centers for teaching and learn-
ing, workshops, professional development programs,

mentoring programs). The universities also have differ-
ent department leadership structures and promotion and
tenure practices. As such, they reflect a range of depart-
ment and institutional dynamics. Each of these institu-
tions has administrators and faculty interested in
systemic change in STEM education with a particular
focus on understanding the factors that lead to greater
EBIP adoption, which partially motivated the focus on
these institutions.

Characteristics of participants
Survey recipients were all full-time permanent faculty in
biology and chemistry departments during the 2015–
2016 academic year. In one institution, the discipline of
biology is housed in two departments, both of which
were included in the study.
Table 1 presents the basic department-level demo-

graphics for gender, rank, and tenure status generated
from our survey. We include these variables as control
variables in our network change models. Because of the
diversity of position titles across the three institutions,
participants are divided according to tenure status with
all non-tenurable positions (such as “lecturer” or
“instructor”) in a non-tenure track category. Tenurable
positions are divided into untenured (assistant professor)
and tenured (associate and full professor). We also
report department size and response rates in Table 1.
Response rates ranged from 40 to 80% per department,
which is comparable or somewhat higher than recent
studies in university STEM departments (e.g., Hender-
son et al., 2019).

Processes and methodologies employed
The project was introduced at respective department
meetings, and invitations to the survey were subse-
quently emailed to faculty. We developed and adminis-
tered the survey in Qualtrics in the 2016 spring
semester. The survey consisted of a consent form, a
question about academic rank, prompts to generate in-
formation on participant social networks within and out-
side their department, and questions to measure the
extent of their own EBIP knowledge and use.
We used the roster method to generate networks

within departments. Faculty were asked to choose from
a complete list of peers in their department with whom
they discussed matters in each of three domains within
the last year, with no limit to the number of individuals
selected within their department. The faculty list was
limited to those who had a teaching assignment during
the last academic year and did not include postdoctoral
researchers, graduate students, or other staff. The
discussion domains included teaching activities (e.g.,
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teaching strategies, student learning, grading, student
achievement), research activities (e.g., your research
topics, their research topics, mutual collaborations, fund-
ing opportunities), and general department and univer-
sity affairs (e.g., course scheduling, administrative
policies, faculty governance). These domains were se-
lected based on the standard appointments and official
responsibilities of faculty within these departments and
do not necessarily represent completely distinct do-
mains. We used the name generator approach to elicit
ties outside of departments and outside of the university.
Respondents could list up to seven names outside their
department and another seven outside their university.
These outside ties were not included in statistical
models due to challenges in collecting their demographic
characteristics. Finally, respondents were asked to select
the top three to five individuals that they discussed mat-
ters in each domain with the most. Networks generated
in each of these domains were combined to form a
multiplex network with variable tie strength.
The final section of the survey included two questions

about EBIPs, defined on the survey as “active learning
techniques, such as just-in-time teaching, peer instruc-
tion, think-pair-share, cooperative learning, team-based
learning, and many others.” One question asked respon-
dents about their knowledge of EBIPs on a 5-point scale
from “extremely knowledgeable” to “not knowledgeable
at all,” and a second question asked about use of EBIPs
on a 5-point scale from “used extensively” to “not used
at all” with a sixth option of “No courses I teach are ap-
propriate courses for EBIP application.” In the analysis,
this sixth category was merged with the fifth category.
We used automated email follow-ups to enhance

response rates in the survey. We closed the survey after
three follow-ups. Data collection and analysis was
reviewed and approved by the Institutional Review
Boards at Boise State University (935-SB16-056), Univer-
sity of Nebraska-Lincoln (16000), and University of
South Florida (Pro00025701).

Statistical analyses
Descriptive analysis of faculty social networks was con-
ducted in R (R Core Team, 2014) using R’s general stat-
istical utilities for procedures like t tests and ANOVA
and using the package sna written specifically for social
network analysis, which includes the routine to fit peer
influence models (Butts, 2008). Descriptive analyses were
used to address the first four research questions and
identify any differences between groups.
The analysis of social influence processes used a vari-

ant of regression analysis and linear network autocorrel-
ation models to explore two potential mechanisms by
which an individual’s knowledge and use of EBIPs can
become correlated with that of their discussion partners.
In the “network effects” model, an individual’s opinion
(i.e., EBIP score) is based on their own covariates and
adjusted to be more like that of the people connected to
them. In the “network disturbances” model, an individ-
ual’s opinion is based on their own covariates and
adjusted based on how the opinions of their peers differ
from expected based on covariates alone. The linear
equations for these two effects formalize these points.
Using Leenders (2002) notation, Eq. 1 below specifies
the network effects model, Eq. 2 the network distur-
bances model, and Eq. 3 is a model that combines both
effects.

y ¼ ρWyþ Xβþ ε ð1Þ
y ¼ Xβþ ε;ε ¼ ρWεþ ν ð2Þ
y ¼ ρ1W 1yþ Xβþ ε; ε ¼ ρ2W 2εþ ν ð3Þ

In these equations, y is a vector of opinions, with ith
element being person i’s opinion, X is a matrix of indi-
vidual covariates (the columns), with the ith row corre-
sponding to person i’s values on the covariates. The
correlation effect through networks is captured by the ρ1
and ρ2 coefficients, the W1y matrix captures the weight-
ing of partners’ opinions on a respondent’s opinion, and

Table 1 Department demographics

Gender Rank Tenure

F M Asst Assoc Full Other Not-tt tt-untenured tt-tenured Size Response rate (N)

Bio1 5 9 7 < 4 < 4 < 4 < 4 7 5 31 45% (14)

Bio2 7 12 6 8 5 < 4 < 4 6 13 47 40% (19)

Bio3 7 9 5 4 5 < 4 < 4 5 9 20 80% (16)

Bio4 8 12 6 5 < 4 4 4 6 8 25 72% (18)

Chem1 8 21 5 5 10 9 9 5 15 40 73% (29)

Chem2 < 4 18 < 4 5 9 < 4 4 < 4 14 32 59% (19)

Chem3 8 9 < 4 6 < 4 8 8 < 4 8 27 67% (18)

Exact counts 0 < n < 4, not specified for privacy reasons
tt tenure-track, Asst assistant, Assoc associate, F female, M male
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the W2ε matrix captures the weighting of partners’ devi-
ations from expected opinion on a respondent’s devi-
ation from his or her expected opinion. The deviations
themselves are denoted by ε and ν, with ε being the
first-order deviation modeled by the network distur-
bances process and v the residual deviation once adjust-
ing for correlated disturbance.
Central to both models are the W matrices, which

capture the weight accorded partners’ opinions or devia-
tions. We have two ways to specify the W matrix:
according to the simple binary adjacency matrix or ac-
cording to the tie strength adjacency matrix. Regardless
of which specification is chosen, the W matrix is row
normalized to capture the assumption that a respondent
accords influence to partners in proportion to the tie
strength to each. In the first specification, all ties have
the same strength, but in the second, strength varies.
Formally, the W matrices can be defined as shown in
Eq. 4 and 5.

Wij ¼ Xij

Σ jXij
for Xij ¼ 0; 1 ð4Þ

Wij ¼ Sij
ΣiSij

for Sij ¼ 0; 1; 2; 3 ð5Þ

Table 7 presents the results of the analysis for each
stipulation of the weight matrix and for each of the three
models, that is, network effects only, network distur-
bances only, and both.
A key question is the effect of response rates on the

peer influence analysis. If individuals who were com-
monly nominated by respondents as teaching discussion
partners did not respond, data on their knowledge and
use are missing and that impacts the assessment of peer
influence. However, if the non-respondents were never
nominated as discussion partners (i.e., have an indegree
of zero), then their absence has no effect on assessing
peer influence. In our data, the number of nominations
received by non-respondents is significantly lower than
the number received by respondents (3.21 vs 5.59,
t(193.95) = − 5.47, p < 0.001) and over half of the non-
respondents received two or fewer nominations (20
received 0, 18 received 1, and 9 received 2). Further-
more, Huisman’s simulation study concludes that in
many cases, simple imputation is inferior to ignoring
missing data and that reciprocity is stable with up to
40% missing data (Huisman, 2014).

Results
Strength of social relationships
First, we report the frequency and relative strength of
ties for each of the departments in this study. Table 2 re-
ports the percent of ties that are reciprocated in each de-
partment. For benchmarking purposes, data from a law

firm studied by Lazega (2001) are presented. These data
have been widely used in social network analysis as a
benchmark for research of a substantive (Lazega & van
Duijn, 1997) and methodological nature (Snijders, Patti-
son, Robins, & Handcock, 2006). In the law firm data,
percent strong (i.e., reciprocated) ties vary from 24 to
53%. In the seven departments in our study, the percent
strong (reciprocated) ties for the teaching discussion re-
lation vary from 33 to 65%, percentages that are compar-
able to the law firm benchmarks.
Another way to examine the strength of ties is to as-

sess the multiplexity of connections, which has been
used as a measure of tie strength since Fischer (1982)
(see also Blumstein & Kollock, 1988). In our survey, we
asked respondents about the discussions they had with
colleagues in the domains of teaching, research, and uni-
versity affairs. Survey prompts generated three separate
networks, which can be added to an integer-valued
measure of tie strength. Uniplex teaching ties comprise
the weakest type; the next strongest are ties that have a
teaching tie and one of the others; and the strongest type
is a teaching tie that co-occurs with both of the other
types of ties. Table 3 shows that overall, only 26% of the
teaching ties are uniplex (“weak”), 42% occur in two do-
mains (“moderate”), and 32% are multiplex across all the
three domains (“strong”). Additionally, teaching ties
paired with department affairs ties are three times as
common as teaching ties paired with research ties.
The distribution of multiplexity types varies signifi-

cantly across the departments as the large value of χ2 in-
dicates. Specifically, Bio1 and Bio3 have significantly
more and Chem2 and Chem3 have significantly fewer of
the strongest type of tie, the triple-stranded connection,
than expected by chance. Also, Bio1, Bio3, and Chem3
have proportionately more teaching ties co-occurring

Table 2 Relative frequency of strong ties defined as
reciprocated nominations

Data Percent strong ties Density N of vertices

Law firm (Lazega, 1998)

Collaborate on projects 53.07 0.222 71

Friendship 44.11 0.116 71

Advice 24.41 0.179 71

Teaching

Bio1 32.65 0.357 14

Bio2 64.91 0.275 19

Bio3 52.63 0.363 16

Bio4 44.58 0.392 18

Chem1 40.00 0.233 29

Chem2 39.71 0.251 19

Chem3 53.85 0.367 17
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with departmental affairs ties than expected by chance
(Table 3).

Diversity of social relationships
Second, we assessed the diversity of ties between faculty
overall and within fields. Based on a homophily analysis
for gender, rank, and tenure status, in most cases, τ (the
inbreeding homophily coefficient, which ranges from 0.0
to 1.0) is significant but small relative to scores found in
other studies (Table 4, Additional file 1: Tables S1–S3
present the complete results of the homophily analysis
for teaching discussions). For example, Skvoretz (2013)
reports homophily scores for over 50 cases in which the
ties are marriage, dating, and cohabitations, and the
grouping variables are ethno-racial group, education,
and religion. Those homophily scores vary from 0.085 to
0.853 with a mean score of about 0.450. In our data, the
largest value—the most homophily—occurs for the
chemistry departments with respect to tenure status
(Table 4). Indeed, inbreeding homophily as measured is
noticeably stronger in the chemistry departments than
in the biology departments.
A second sense of tie diversity is whether teaching ties

reach out beyond the local context of the department.
We examine this notion of diversity by analyzing the
naming of discussion partners outside the department
but inside the university (nt.u) and also partners outside

the university (nt.o); we note that a maximum of seven
names could be given to each prompt. We know of no
other data set that can serve as a benchmark, but we can
explore variation in these extra-departmental ties across
our seven departments. Additional file 1: Figure S1 dis-
plays the distributions of these variables. By far, the most
common response is to give no names in response to
each prompt. Across the sample, a conventional (paired)
t test yields a statistically significant difference (at the
0.05 level) between the means of nt.u (M = 1.63, SD =
2.16) and nt.o (M = 1.08, SD = 1.92); t(131) = 3.11,
0.002). Although it is possible that different fields may
have different practices regarding teaching consultations,
the comparisons of fields on their means of nt.u (Biology
mean 1.70, SD = 2.09; Chemistry mean 1.55, SD = 2.24;
t(128.75) = 0.39, ns) and nt.o (Biology mean 1.04, SD =
1.82 ; Chemistry mean 1.11, SD = 2.02; t(127.65) = −
0.19, ns) indicate no statistically significant difference
between these chemistry and biology departments. Thus,
not surprisingly, respondents name more teaching con-
tacts outside their department but in their university
than outside their university, and the hypothesis that the
fields do not differ in their reaching out cannot be
rejected.

Roles of key players
Third, we determined if faculty of higher rank tend to
occupy more central positions. Table 5 presents the
mean indegree (number of people who nominated a
given individual) of teaching discussion nominations by
rank and by tenure status. There is variation over cat-
egories, but ANOVA (controlling for non-independence
in indegree scores) shows that indegree centrality is not
associated with organizational position (either rank [F(3,
128) = 1.002, p = 0.394] or tenure status [F(2, 129) =
1.331, p = 0.268]) across the sample. Thus, individuals of
a certain rank or tenure status are not nominated more

Table 3 Count and percent of multiplex teaching ties

N (percent) Total
(counts)Teaching Teaching and research* Teaching and departmental affairs* Teaching, research, and departmental affairs

Bio1 9 (13.9) 4 (6.2) 25 (38.5) 27 (41.5) 65

Bio2 25 (26.6) 14 (14.9) 22 (23.4) 33 (35.1) 94

Bio3 16 (18.4) 0 (0.00) 31 (35.6) 40 (46.0) 87

Bio4 32 (26.7) 13 (10.8) 33 (27.5) 42 (35.0) 120

Chem1 48 (25.4) 25 (13.2) 53 (28.0) 63 (33.3) 189

Chem2 25 (29.1) 17 (19.8) 20 (23.3) 24 (27.9) 86

Chem3 36 (36.0) 11 (11.0) 44 (44.0) 9 (9.0) 100

Total 191 (25.8) 84 (11.3) 228 (30.8) 238 (32.1) 741

χ2 = 64.89, df = 18, p < 0.001
*Combining teaching and research and teaching and departmental affairs to produce weights for ties from 1 to 3 yields χ2 = 40.38, df = 12, p < 0.001. Largest
contributors to χ2 are Bio1 (more 2’s and 3’s and fewer 1’s than expected), Bio3 (more 3’s and fewer 1’s and 2’s than expected), and Chem3 (more 1’s and 2’s and
fewer 3’s than expected)

Table 4 Summary of homophily overall and by field

Data set Rank Tenure status Gender†

Overall τ = 0.082, p < 0.001 τ = 0.096, p < 0.001 τ = 0.067

Biology τ = 0.006, ns τ = 0.019, ns τ = 0.000

Chemistry τ = 0.083, p < 0.01 τ = 0.114, p < 0.01 τ = 0.143

Summary of full results available in Additional file 1: Tables S1–S3. τ is the
inbreeding coefficient defined in the main text
†In our study, for the gender dimension, the estimation of the homophily
coefficient uses up 1 degree of freedom for the 2 × 2 table, and so a test for
difference from 0 of the coefficient cannot be conducted
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often as teaching discussion partners than those of any
other rank or tenure status.
Each department’s score on indegree centralization, a

department-level metric that measures the amount of
variation in individual centrality relative to the max-
imum possible, is significantly higher than expected by
chance indicating that ties within these departments
tend to favor certain individuals rather than being evenly
spread across the networks. The centralization score var-
ies theoretically in the interval [0, 1] with higher num-
bers being more centralized (Anderson, Butts, & Carley,
1999). Scores for the seven departments Bio1, Bio2,
Bio3, Bio4, Chem1, Chem2, and Chem3 are 0.444, 0.472,
0.457, 0.314, 0.321, and 0.207, respectively. Taken to-
gether, these analyses of potential key players suggest
that targeting central actors for innovation seeding is
superior to selection on the basis of high-status
organizational position.

Knowledge and use of EBIPs
Fourth, our survey asked respondents about their know-
ledge and use of EBIPs, which we use to assess if know-
ledge or use of EBIPs correlates between discussion
partners across the sample. Additional file 1: Figure S2
shows the distribution of responses. The middle category
is the most frequent on both knowledge and use but
with clear variation on both questions (Additional file 1:
Figure S3). We first examine whether knowledge and
use are related to individual attributes like gender, rank,
and tenure status to determine what control variables
are required for the peer influence models; second, we
assess whether an individual’s knowledge and use are
correlated with the levels of knowledge and use of their
teaching discussion partners; and third, we propose and
estimate specific models of peer influence.

Gender, rank, and tenure status define different groups
among which average scores on knowledge and use may
differ. For the first dimension, a simple t test can be used
and for the others, ANOVA. Results for the two EBIP
items are found in Table 6. For the first item, knowledge
of EBIPs, none of the three dimensions makes a signifi-
cant difference. For the second item, use of EBIPs (in
which a lower score indicates greater use), gender makes
a difference but not rank or tenure status. Specifically,
women (n = 42) have greater use of EBIPs than men (n
= 90), which is shown by a lower score on the use item,
and the difference is significant at 0.05. Because the dif-
ference in use is significant between genders, we also
calculated the magnitude of effect using Hedge’s g
(0.44), which is advised for t tests of different sample
sizes. This finding implies gender should be included as
an individual-level factor in the specific models of peer
influence.
The second step determines if a respondent’s know-

ledge and use of EBIPs are related to that of their teach-
ing discussion partners. We have two measures of the
tie sent: first, a binary indicator for the presence/absence
of a teaching discussion tie, and second, a count of the
multiplexity of the teaching discussion. In the first case,
everyone nominated by a respondent has equal influence
potential. In the second case, those connected by
additional strands (research and/or departmental affairs
discussion) are presumed to have stronger ties and a
greater influence potential.
We can first assess whether there is any relationship

between a respondent’s knowledge and use and that of
their partners before estimation of specific models. To

Table 5 Centrality and organizational position

Centrality

Rank Mean indegree n

Assistant Professor 5.78 32

Associate Professor 5.00 35

Full Professor 5.46 37

Other 6.39 28

F = 1.002; df1, df2 = 3, 128; p = 0.394

Tenure status Mean indegree n

Non-tt 6.39 28

Untenured 5.78 32

Tenured 5.24 72

F = 1.331; df1, df2 = 2, 129; p = 0.268

ANOVA using a permutation test in UCINET (Borgatti, Everett, & Freeman,
2002) to calculate standard errors to control for non-independence in
indegree scores
tt tenure track

Table 6 EBIP scores and individual attributes

Mean (sd) knowledge Mean (sd) use*

Gender

Female 2.90 (1.01) 2.57 (1.06)

Male 3.16 (0.91) 3.06 (1.15)

t = − 1.43, ns t = − 2.38, p < 0.05

Rank

Asst 2.91 (1.00) 2.81 (1.23)

Assoc 3.29 (0.79) 2.77 (1.03)

Full 3.24 (0.98) 3.19 (1.17)

Other 2.82 (0.98) 2.79 (1.10)

F = 1.77, ns F = 1.11, ns

Tenure status

Not-tt 2.82 (0.98) 2.79 (1.10)

Untenured 2.91 (1.00) 2.81 (1.23)

Tenured 3.26 (0.89) 2.99 (1.12)

F = 3.014, ns F = 0.044, ns

ns not significant, tt tenure track
*A lower score indicates greater use of EBIPs
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do this, we calculate two averages: one where partners
are weighted equally and one where partners are
weighted proportional to tie strength, and then correlate
these averages with the respondent’s knowledge and use
scores. These correlations from across the sample are
presented in Additional file 1: Table S4. First, knowledge
and use are correlated to a substantial degree (0.77)
meaning that those reporting more knowledge about
EBIPs also report more use of them. Second, the correla-
tions between the respondent’s response and the average
response of their peers are small but significant, and this
confirms the value of estimating specific peer influence
models. The correlation between a respondent’s score
and average of their partners is 0.24 for the knowledge
item and 0.23 for the use item, and these correlations
are similar irrespective of whether partner averages are
unweighted or weighted. For both EBIP items, the two
versions of partner average are highly correlated: for
knowledge, the correlation is 0.98, and for use, it is 0.98.
These correlations suggest the more complicated meas-
ure of tie strength does not differ much from the simple
measure and either has about the same relationship to a
respondent’s attitude. Sociograms of the unweighted and
weighted teaching discussion networks in each depart-
ment visually demonstrate the substantial similarity
between the two (Additional file 1: Figure S3).

Peer influence
Fifth, we assessed which peer influence model best de-
scribes the relationship between faculty social networks
and their teaching practices across the sample. Gender
was chosen as an individual covariate for peer influence
analysis, since previous analysis indicated a gender effect
on the EBIP variables. Gender is entered as a binary
dummy variable, so the constant refers to the effect of
the reference category, male, on the dependent variable.
Table 7 provides the results from three models of peer
influence: network effects, network disturbance, and a
combined model.
With respect to attribute effects, gender affects use but

not knowledge across models. Female respondents report
more use of EBIPs (lower scores from the reference
category), and the difference is statistically significant at
the 0.05 level under both the weighted and unweighted
specifications of the influence matrix. While female re-
spondents also report consistently more knowledge, none
of the differences reach statistical significance. These re-
sults for gender are consistent with earlier findings by
Henderson, Dancy, and Niewiadomska-Bugaj (2010).
With respect to the peer influence process itself, there

are three general findings. First, the correlation between
a respondent’s knowledge and use and the knowledge
and use scores of their partners is more consistent with
a “network disturbances” process than a “network
effects” process. The values of the network effects coeffi-
cient ρ1 are not significantly different from 0, while the

Table 7 Peer influence models

Knowledge Use

Equally weighted Weighted by strength Equally weighted Weighted by strength

Network effects model

Constant 2.940** 2.932*** 2.769*** 2.765***

Female − 0.254 ns − 0251 ns − 0.471* − 0.467*

ρ1 0.080 ns 0.081 ns 0.110 ns 0.110 ns

AIC 365.0 364.9 409.5 409.4

Network disturbances model

Constant 3.237*** 3.213*** 3.136*** 3.122***

Female − 0.239 ns − 0.225 ns − 0.439* − 0.438*

ρ2 0.315* 0.285* 0.293* 0.272*

AIC 360.1 360.5 406.5 406.5

Network effects + network disturbances model

Constant 3.548*** 3.546*** 3.323*** 3.338***

Female − 0.239 ns − 0.221 ns − 0.434* − 0.431*

ρ1 − 0.104 ns − 0.112 ns − 0.066 ns − 0.076 ns

ρ2 0.386** 0.367** 0.339* 0.329*

AIC 361.3 361.6 408.2 408.2
•p < 0.10, *p < 0.05, **p < 0.01, ***p < 0.001
ns not significant
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values of the network disturbances coefficient ρ2 are all
positive and statistically significant at the 0.05 level.
Thus, the respondent-partner correlation arises from a
shared tendency to depart from the opinion predicted by
individual attributes rather than adjustment in response
to the opinion themselves. In plain words, two individ-
uals tied in the teaching discussion network have posi-
tively correlated scores on knowledge and positively
correlated scores on use because being connected means
they move in the same direction relative to the scores
predicted from attributes alone. This is different from
network effects where the average of partners’ scores
affects respondent’s score directly. Second, the AIC
measure (i.e., an estimate of model quality relative to
other models that considers both goodness of fit and
model simplicity) shows that using the more compli-
cated weighted matrix does not improve fit over the
simpler option of the unweighted matrix. As a result,
including the strength of a teaching discussion tie as
determined by its overlap with the two other types of
ties (e.g., research and departmental affairs) does not
produce a better fitting model over one based on the
simple existence of a teaching discussion tie. Third, the
simplest model that provides the best fit according to
AIC is the network disturbances only model. There is no
evidence for a network effects process (either alone or in
a combined model) producing correlation in the
knowledge and use of EBIPS by individuals tied in the
discussion network.

Discussion
The current research is motivated by the idea that suc-
cessfully answering the calls for STEM reform requires
understanding faculty social networks and the part they
can play in institutional change initiatives. Studies of fac-
ulty networks in higher education are limited in number,
so our work adds to a growing empirical base. Including
multiple institutions and departments allows us to ob-
serve our results in multiple contexts. We focus analysis
on variation in tie strength and diversity, the relationship
between indegree centrality and organizational position,
and the influence that peers may have on one another
with respect to key concerns of STEM reform efforts,
specifically, the knowledge and use of EBIPs. Our study
is the first to investigate network effects models in this
context. By analyzing our data using network effects
models, we may consider how teaching reform initiatives
can leverage network effects. Future work could consider
testing these models in additional contexts and aiming
to purposefully compare across institutions and depart-
ments achieving sufficient response rates.
First, we find that teaching discussion ties are often

strong ties by two measures: reciprocity-based and mul-
tiplexity-based. The presence of strong ties indicates that

the departments studied may be conducive to behavioral
changes (Centola, 2018) suggesting good prospects for
instructional reform. Second, the teaching discussion ties
are diverse. They link faculty in different demographic
(gender) and organizational groups (rank and tenure sta-
tus). Teaching discussion ties also occur to colleagues
outside the local department, another form of diversity.
We find that departments in our study vary in tie diver-
sity (i.e., heterophily), which serves as further encourage-
ment for exploration about the relationship between tie
diversity and diffusion of new practices, as suggested by
Kezar (2014). Third, opinion leadership, defined here as
indegree centrality, in the teaching discussion network is
not associated with faculty rank or tenure status. Sup-
port of organizationally higher ranked faculty does not
provide advantage to change efforts because these indi-
viduals are no more likely to be opinion leaders than
lower ranked faculty (at least in a network sense). How-
ever, variation in centrality means targeting opinion
leaders may be a useful strategy. These opinion leaders
might be explicitly supported to function similarly to the
CoP mentors studied by Ma et al. (2018) and Mestre et
al. (2019). Finally, there is evidence of peer influence on
knowledge and use of EBIPs, supporting the motivating
premise that faculty social networks matter to change
initiatives. The specific type of peer influence, however,
is complex: faculty do not adjust their knowledge and
use to match that of their discussion partners but in-
stead adjust when their partners are more or less
knowledgeable or more or less engaged in use than
predicted for those partners.
This work has relevance for leaders of instructional

change initiatives. Assuming the seven departments
studied across three institutions are representative, the
existence of strong ties suggests potential levers for
change, and the diversity of ties indicates further oppor-
tunities. These two positive change indicators may re-
flect that each research site includes groups of STEM
faculty who are interested in systemic change in STEM
education. The effect caused by the presence of these
faculty could explain why this result is different than
that predicted by Kezar (2014). Other universities with
less supportive climates may fit the expected pattern of
mostly weak and not diverse ties.
Indegree centrality, or how highly connected an

individual is within a network, is not associated with
academic rank in these departments. On the one hand,
those of higher organizational rank are not more likely
to be central or influential. If the support of higher ranks
is essential to success, this finding does not bode well
because these individuals do not necessarily have greater
network access. On the other hand, there is variation in
indegree centrality. Targeting central actors who do have
a high indegree centrality to begin seeding innovation
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would be superior to selecting people at random or, in
this case, those with high academic ranks. An implica-
tion is that prior to any change initiative, agents could
use a social network approach as part of a set of strat-
egies to determine leverage points within an institution
or department. However, this finding does not mean that
academic rank has no bearing on instructional change. In-
deed, individuals of high academic rank may still influence
departmental teaching practices through network-inde-
pendent mechanisms, such as by setting precedent
through their own instructional reputation, influencing
teaching climate based on comments at faculty meetings,
or affecting policy-level decisions. As recommended in
Knaub et al. (2018), change agents should draw from mul-
tiple sources of data including SNA to identify those most
likely to be harnessed to promote change.
Our peer influence analysis reinforces the importance

of teaching discussions among faculty. In particular, we
provide the first empirical investigation that suggests the
peer influence process among undergraduate science
faculty within academic departments follows a network
disturbance model. According to this model, the teach-
ing practices of connected individuals vary together
likely based on a joint response to factor(s) not
accounted for in their personal attributes. This response
is not necessarily a conscious behavior, and it could arise
in individuals together based on discussions or separ-
ately based on shared experiences related to their ties.
While the model cannot pinpoint a specific causative
factor, we can hypothesize a process by which network
disturbance could have arisen. For example, if a depart-
ment changed how teaching was evaluated (e.g., through
the development of new criteria), an individual might be
inclined to change based on discussions. Alternatively, if
instructional designers worked preferentially with intro-
ductory-level instructors and these instructors tend to
talk with each other, they could produce correlated EBIP
scores (even though the instructors may not directly dis-
cuss the causative factor). There is no evidence for a net-
work effects mechanism which, assuming positive
autocorrelation, would produce a convergence of opin-
ions towards the average of the opinions of discussion
partners.
The network disturbance model also has key implica-

tions for change agents. Our data suggest that instruc-
tional change does not arise simply from individuals
seeking to conform their teaching to those of their
colleagues (i.e., the network effects model). Rather, indi-
viduals appear to be inclined to adjust their teaching
practices based on how others deviate from predictions.
Thus, the goal of change agents should not be to recruit
individuals who implement high levels of EBIPs in hopes
that others will seek to emulate this behavior. Change
agents could seek to create opportunities for positive

growth, which would affect the network as correlated
change between discussion partners. This finding has
significance for the change movement, because it implies
that individuals can be affected by a positive change
among any of their discussion partners, regardless of
their partners’ absolute EBIP implementation levels.

Other considerations
There are several limitations that arise from working
with a small number of departments as well as from
SNA in general. First, the amount of data collected de-
pends on survey response rates and descriptive results
such as homophily and indegree centrality analyses must
be tempered accordingly.
Second, we are logistically limited to a modest number

of departments and faculty. Combining the relatively
small size of the average STEM department and the reli-
ance on survey responses, homophily and indegree cen-
trality analyses cannot be performed at the department
level due to a small sample size. Furthermore, there are
no specific hypotheses as to why and how departments
may differ. Performing analyses at the department level
would therefore be unmotivated by research questions.
Third, models of peer influence assume that the struc-

ture of the network affects the opinion or deviation
thereof. However, we cannot claim a causal relationship
between the network disturbance model and knowledge
and use of EBIPs. We have shown evidence that is
consistent with the network influencing this knowledge
and use, but it is not conclusive. On a related note, we
cannot provide conclusive evidence that the network dis-
turbances model is the best fit to the data. Rather, the
network disturbances model is consistent with our data
and more supported than the network effects model.
Finally, the self-report data on knowledge and use of

EBIPs was not confirmed through data triangulation for
this research. While some studies have questioned the
validity of faculty self-reported survey data (e.g., Ebert-
May et al., 2011), other evidence suggests that faculty
responses can align closely with a third-party observer
regarding the frequency of active learning in a course
(Durham et al., 2018). An intriguing question for future
investigation is whether peer influence results differ
based whether teaching practices are self-reported versus
measured by a third-party observer.

Conclusions
SNA has great potential for answering core questions
about how information and change spread throughout a
department, but also can be used as a tool by change ini-
tiatives to better understand departmental dynamics and
thereby purposefully design change strategies best suited
for that environment. For example, in the chemistry and
biology departments at these three institutions, change
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agents can expect that faculty may serve as opinion
leaders regardless of their academic rank. Also, faculty in
these departments can be influenced to increase their
knowledge and use of EBIPs, even if their discussion
partners have comparatively lower EBIP knowledge and
use. Future studies should strive to capture departmental
diversity considering disciplines, institutions, and the
presence or absence of already occurring change initia-
tives to continue to answer fundamental questions about
the dynamics of STEM departments.
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