115 research outputs found
Effect of DDGS manure on soil and plant: preliminary results of the greenhouse study
Non-Peer ReviewedThe use of dried distillers’ grains with solubles (DDGS) in feedlot cattle diets is increasing as the
bio-ethanol industry expands. Manure derived from dried distiller’s grain with solubles (DDGS)
fed cattle seem to have higher amounts of N and P than manure from regular grain fed cattle.
This study investigates how DDGS manure affects soil fertility and nutrient uptake by barley
grown in a controlled greenhouse environment. Both DDGS and regular manure were applied at
30, 60, 120 and 180 Mg ha-1 yr-1 to a sand soil. The results of the first 3 harvest cycles indicate
that both types of manure resulted in similar increase in plant total P content. However, soil TP
and available P concentrations in DDGS manure treatments were higher. Soil available in DDGS
treatments was twice as much of that in regular manure. Increase in soil TN and available N
contents was similar with both types of manure. Plant TN content did not seem to be influenced
by manure application. This study indicates that the main concern with the use of DDGS manure
is its high P solubility. However, no significant increase in soil available P was observed at a
manure rate of 30 Mg ha-1 yr-1
Row spacing of annual peanut (Arachis Hypogaea l.) and the conservation of peanut haulm as hay or silage: Effects on nutritive value and growth performance of sheep
This study investigated the effects of planting annual peanut at inter-row spacings of 30, 45, 60 or 75 cm on haulm yield and nutritional quality (Experiment I), in vitro digestibility (Experiment II) and growth performance of sheep fed peanut hay or silage diets (Experiment III). At harvest, pea-nut haulms were either sun-dried as hay or ensiled and used to formulate two diets that were fed to sheep. Twenty West African Dwarf ram-lambs (29.7±0.99 kg) were randomly assigned to these two dietary treatments in a completely randomized design. Grain (P=0.033) and haulm (P=0.045) yields were highest at 30 cm as compared to the other spacings; whereas yeasts populations, and butyric acid and ammonia N concentrations were higher in the silage than hay (Experiment I). In vitro NDF digestibility linearly decreased (P=0.001) with increasing row space (Experiment II). In experiment III, the DM intake of the silage-based diet was depressed (P=0.069) by 235.8 g/d com-pared to the hay-based diet; whereas feed efficiency (P=0.053) and average daily gain (P=0.012) were lower for the silage- than hay-based diet. In conclusion, in vitro NDF digestibility of peanut haulm was higher at narrow row spacing whereas growth performance was superior for sheep fed the hay-based rather than the silage-based diet
Extracellular free water elevations are associated with brain volume and maternal cytokine response in a longitudinal nonhuman primate maternal immune activation model
Maternal infection has emerged as an important environmental risk factor for neurodevelopmental disorders, including schizophrenia and autism spectrum disorders. Animal model systems of maternal immune activation (MIA) suggest that the maternal immune response plays a significant role in the offspring’s neurodevelopment and behavioral outcomes. Extracellular free water is a measure of freely diffusing water in the brain that may be associated with neuroinflammation and impacted by MIA. The present study evaluates the brain diffusion characteristics of male rhesus monkeys (Macaca mulatta) born to MIA-exposed dams (n = 14) treated with a modified form of the viral mimic polyinosinic:polycytidylic acid at the end of the first trimester. Control dams received saline injections at the end of the first trimester (n = 10) or were untreated (n = 4). Offspring underwent diffusion MRI scans at 6, 12, 24, 36, and 45 months. Offspring born to MIA-exposed dams showed significantly increased extracellular free water in cingulate cortex gray matter starting as early as 6 months of age and persisting through 45 months. In addition, offspring gray matter free water in this region was significantly correlated with the magnitude of the maternal IL-6 response in the MIA-exposed dams. Significant correlations between brain volume and extracellular free water in the MIA-exposed offspring also indicate converging, multimodal evidence of the impact of MIA on brain development. These findings provide strong evidence for the construct validity of the nonhuman primate MIA model as a system of relevance for investigating the pathophysiology of human neurodevelopmental psychiatric disorders. Elevated free water in individuals exposed to immune activation in utero could represent an early marker of a perturbed or vulnerable neurodevelopmental trajectory
Quantifying fluorescent glycan uptake to elucidate strain-level variability in foraging behaviors of rumen bacteria
Gut microbiomes, such as the microbial community that colonizes the rumen, have vast catabolic potential and play a vital role in host health and nutrition. By expanding our understanding of metabolic pathways in these ecosystems, we will garner foundational information for manipulating microbiome structure and function to influence host physiology. Currently, our knowledge of metabolic pathways relies heavily on inferences derived from metagenomics or culturing bacteria in vitro. However, novel approaches targeting specific cell physiologies can illuminate the functional potential encoded within microbial (meta)genomes to provide accurate assessments of metabolic abilities. Using fluorescently labeled polysaccharides, we visualized carbohydrate metabolism performed by single bacterial cells in a complex rumen sample, enabling a rapid assessment of their metabolic phenotype. Specifically, we identified bovine-adapted strains of Bacteroides thetaiotaomicron that metabolized yeast mannan in the rumen microbiome ex vivo and discerned the mechanistic differences between two distinct carbohydrate foraging behaviors, referred to as “medium grower” and “high grower.” Using comparative whole-genome sequencing, RNA-seq, and carbohydrate-active enzyme fingerprinting, we could elucidate the strain-level variability in carbohydrate utilization systems of the two foraging behaviors to help predict individual strategies of nutrient acquisition. Here, we present a multi-faceted study using complimentary next-generation physiology and “omics” approaches to characterize microbial adaptation to a prebiotic in the rumen ecosystem
Physics of Solar Prominences: II - Magnetic Structure and Dynamics
Observations and models of solar prominences are reviewed. We focus on
non-eruptive prominences, and describe recent progress in four areas of
prominence research: (1) magnetic structure deduced from observations and
models, (2) the dynamics of prominence plasmas (formation and flows), (3)
Magneto-hydrodynamic (MHD) waves in prominences and (4) the formation and
large-scale patterns of the filament channels in which prominences are located.
Finally, several outstanding issues in prominence research are discussed, along
with observations and models required to resolve them.Comment: 75 pages, 31 pictures, review pape
Increased Striatal Presynaptic Dopamine in a Nonhuman Primate Model of Maternal Immune Activation: A Longitudinal Neurodevelopmental Positron Emission Tomography Study With Implications for Schizophrenia
Background: Epidemiological studies suggest that maternal immune activation (MIA) is a significant risk factor for future neurodevelopmental disorders, including schizophrenia (SZ), in offspring. Consistent with findings in SZ research and work in rodent systems, preliminary cross-sectional findings in nonhuman primates suggest that MIA is associated with dopaminergic hyperfunction in young adult offspring. Methods: In this unique prospective longitudinal study, we used [18F]fluoro-l-m-tyrosine positron emission tomography to examine the developmental time course of striatal presynaptic dopamine synthesis in male rhesus monkeys born to dams (n = 13) injected with a modified form of the inflammatory viral mimic, polyinosinic:polycytidylic acid [poly(I:C)], in the late first trimester. Striatal (caudate, putamen, and nucleus accumbens) dopamine from these animals was compared with that of control offspring born to dams that received saline (n = 10) or no injection (n = 4). Dopamine was measured at 15, 26, 38, and 48 months of age. Prior work with this cohort found decreased prefrontal gray matter volume in MIA offspring versus controls between 6 and 45 months of age. Based on theories of the etiology and development of SZ-related pathology, we hypothesized that there would be a delayed (relative to the gray matter decrease) increase in striatal fluoro-l-m-tyrosine signal in the MIA group versus controls. Results: [18F]fluoro-l-m-tyrosine signal showed developmental increases in both groups in the caudate and putamen. Group comparisons revealed significantly greater caudate dopaminergic signal in the MIA group at 26 months. Conclusions: These findings are highly relevant to the known pathophysiology of SZ and highlight the translational relevance of the MIA model in understanding mechanisms by which MIA during pregnancy increases risk for later illness in offspring
Assessment of genetic parameters of degradability in maize grains due to indentation scores
Maize (Zea mays L.) cultivars with dent grains present higher starch and dry matter ruminal degradability than those with flint grains. This study aimed to assess genetic parameters of degradability in maize grains of different textures and to verify whether there is an association between grain indentation score and ruminal dry matter (RDM) degradability. The evaluated progenies were obtained from the cross between the varieties Cristal (flint) and Cunha (dent), previously selected for grain hardness. Progenies were evaluated for an indentation score using a visual grading scale ranging from 1 (flint) to 5 (dent). To assess the RDM degradability, 5 g were cut into halves, weighed (five grams), stored in bags made of 100% "failet" cloth and incubated for 24 h in the rumen of three ruminally cannulated cows. There was genetic variability for RDM degradability and heritability was 46%, indicating the possibility of success using a selection. There was no association between indentation score and RDM degradability percentage; thus, visual evaluation not always reflects grain hardness per se since it indicates the pericarp aspect but not the endosperm constitution.Cultivares de milho (Zea mays L.) com grãos do tipo dentado possuem maior porcentagem de amido e degradabilidade ruminal da matéria seca do que os com grãos do tipo duro. Estimaram-se parâmetros genéticos da degradabilidade de grãos de milho com diferentes texturas e verificou-se se ocorre associação entre o escore de identação dos grãos visualmente avaliados e a degradabilidade in situ da matéria seca (DISMS). Foram avaliadas progênies oriundas do cruzamento entre a variedade Cristal, de grãos duros, e a variedade Cunha de grãos dentados, previamente selecionadas para a dureza dos grãos. As progênies foram avaliadas com relação ao escore de identação por meio de uma escala visual de notas variando de 1 (duro) a 5 (mole). Para a avaliação da DISMS os grãos foram cortados ao meio, pesados 5 g colocados em saquinhos de tecido "failet" e incubados no rúmen, por 24 h, em três vacas portadoras de cânula ruminal. Há variabilidade genética para a DISMS, com herdabilidade de 46%, indicando ser possível o sucesso com a seleção. Não há associação entre o escore de identação e a porcentagem de DISMS. Assim, a avaliação visual nem sempre reflete a dureza per se dos grãos, pois o que se vê é o aspecto do pericarpo e não a constituição do endosperma
- …