80 research outputs found
Deterministic and stochastic descriptions of gene expression dynamics
A key goal of systems biology is the predictive mathematical description of
gene regulatory circuits. Different approaches are used such as deterministic
and stochastic models, models that describe cell growth and division explicitly
or implicitly etc. Here we consider simple systems of unregulated
(constitutive) gene expression and compare different mathematical descriptions
systematically to obtain insight into the errors that are introduced by various
common approximations such as describing cell growth and division by an
effective protein degradation term. In particular, we show that the population
average of protein content of a cell exhibits a subtle dependence on the
dynamics of growth and division, the specific model for volume growth and the
age structure of the population. Nevertheless, the error made by models with
implicit cell growth and division is quite small. Furthermore, we compare
various models that are partially stochastic to investigate the impact of
different sources of (intrinsic) noise. This comparison indicates that
different sources of noise (protein synthesis, partitioning in cell division)
contribute comparable amounts of noise if protein synthesis is not or only
weakly bursty. If protein synthesis is very bursty, the burstiness is the
dominant noise source, independent of other details of the model. Finally, we
discuss two sources of extrinsic noise: cell-to-cell variations in protein
content due to cells being at different stages in the division cycles, which we
show to be small (for the protein concentration and, surprisingly, also for the
protein copy number per cell) and fluctuations in the growth rate, which can
have a significant impact.Comment: 23 pages, 5 figures; Journal of Statistical physics (2012
Integrated analyses of single-cell atlases reveal age, gender, and smoking status associations with cell type-specific expression of mediators of SARS-CoV-2 viral entry and highlights inflammatory programs in putative target cells
The COVID-19 pandemic, caused by the novel coronavirus SARS-CoV-2, creates an urgent need for identifying molecular mechanisms that mediate viral entry, propagation, and tissue pathology. Cell membrane bound angiotensin-converting enzyme 2 (ACE2) and associated proteases, transmembrane protease serine 2 (TMPRSS2) and Cathepsin L (CTSL), were previously identified as mediators of SARS-CoV2 cellular entry. Here, we assess the cell type-specific RNA expression of ACE2, TMPRSS2, and CTSL through an integrated analysis of 107 single-cell and single-nucleus RNA-Seq studies, including 22 lung and airways datasets (16 unpublished), and 85 datasets from other diverse organs. Joint expression of ACE2 and the accessory proteases identifies specific subsets of respiratory epithelial cells as putative targets of viral infection in the nasal passages, airways, and alveoli. Cells that co-express ACE2 and proteases are also identified in cells from other organs, some of which have been associated with COVID-19 transmission or pathology, including gut enterocytes, corneal epithelial cells, cardiomyocytes, heart pericytes, olfactory sustentacular cells, and renal epithelial cells. Performing the first meta-analyses of scRNA-seq studies, we analyzed 1,176,683 cells from 282 nasal, airway, and lung parenchyma samples from 164 donors spanning fetal, childhood, adult, and elderly age groups, associate increased levels of ACE2, TMPRSS2, and CTSL in specific cell types with increasing age, male gender, and smoking, all of which are epidemiologically linked to COVID-19 susceptibility and outcomes. Notably, there was a particularly low expression of ACE2 in the few young pediatric samples in the analysis. Further analysis reveals a gene expression program shared by ACE2(+)TMPRSS2(+) cells in nasal, lung and gut tissues, including genes that may mediate viral entry, subtend key immune functions, and mediate epithelial-macrophage cross-talk. Amongst these are IL6, its receptor and co-receptor, IL1R, TNF response pathways, and complement genes. Cell type specificity in the lung and airways and smoking effects were conserved in mice. Our analyses suggest that differences in the cell type-specific expression of mediators of SARS-CoV-2 viral entry may be responsible for aspects of COVID-19 epidemiology and clinical course, and point to putative molecular pathways involved in disease susceptibility and pathogenesis
On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection
A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)
Graph Transformation in Molecular Biology
In the beginning, one of the main fields of application of graph transformation was biology, and more specifically morphology. Later, however, it was like if the biological applications had been left aside by the graph transformation community, just to be moved back into the mainstream these very last years with a new interest in molecular biology. In this paper, we review several fields of application of graph grammars in molecular biology, including: the modeling higherdimensional structures of biomolecules, the description of biochemical reactions, the analysis of metabolic pathways, and their potential use in computational systems biology
- …