924 research outputs found

    Learning to coordinate in a complex and non-stationary world

    Full text link
    We study analytically and by computer simulations a complex system of adaptive agents with finite memory. Borrowing the framework of the Minority Game and using the replica formalism we show the existence of an equilibrium phase transition as a function of the ratio between the memory λ\lambda and the learning rates Γ\Gamma of the agents. We show that, starting from a random configuration, a dynamic phase transition also exists, which prevents the system from reaching any Nash equilibria. Furthermore, in a non-stationary environment, we show by numerical simulations that agents with infinite memory play worst than others with less memory and that the dynamic transition naturally arises independently from the initial conditions.Comment: 4 pages, 3 figure

    Hierarchical information clustering by means of topologically embedded graphs

    Get PDF
    We introduce a graph-theoretic approach to extract clusters and hierarchies in complex data-sets in an unsupervised and deterministic manner, without the use of any prior information. This is achieved by building topologically embedded networks containing the subset of most significant links and analyzing the network structure. For a planar embedding, this method provides both the intra-cluster hierarchy, which describes the way clusters are composed, and the inter-cluster hierarchy which describes how clusters gather together. We discuss performance, robustness and reliability of this method by first investigating several artificial data-sets, finding that it can outperform significantly other established approaches. Then we show that our method can successfully differentiate meaningful clusters and hierarchies in a variety of real data-sets. In particular, we find that the application to gene expression patterns of lymphoma samples uncovers biologically significant groups of genes which play key-roles in diagnosis, prognosis and treatment of some of the most relevant human lymphoid malignancies.Comment: 33 Pages, 18 Figures, 5 Table

    Factors in AIDS Dementia Complex Trial Design: Results and Lessons from the Abacavir Trial

    Get PDF
    OBJECTIVES: To determine the efficacy of adding abacavir (Ziagen, ABC) to optimal stable background antiretroviral therapy (SBG) to AIDS dementia complex (ADC) patients and address trial design. DESIGN: Phase III randomized, double-blind placebo-controlled trial. SETTING: Tertiary outpatient clinics. PARTICIPANTS: ADC patients on SBG for ≥8 wk. INTERVENTIONS: Participants were randomized to ABC or matched placebo for 12 wk. OUTCOME MEASURES: The primary outcome measure was the change in the summary neuropsychological Z score (NPZ). Secondary measures were HIV RNA and the immune activation markers β-2 microglobulin, soluble tumor necrosis factor (TNF) receptor 2, and quinolinic acid. RESULTS: 105 participants were enrolled. The median change in NPZ at week 12 was +0.76 for the ABC + SBG and +0.63 for the SBG groups (p = 0.735). The lack of efficacy was unlikely related to possible limited antiviral efficacy of ABC: at week 12 more ABC than placebo participants had plasma HIV RNA ≤400 copies/mL (p = 0.002). There were, however, other factors. Two thirds of patients were subsequently found to have had baseline resistance to ABC. Second, there was an unanticipated beneficial effect of SBG that extended beyond 8 wk to 5 mo, thereby rendering some of the patients at baseline unstable. Third, there was an unexpectedly large variability in neuropsychological performance that underpowered the study. Fourth, there was a relative lack of activity of ADC: 56% of all patients had baseline cerebrospinal fluid (CSF) HIV-1 RNA <100 copies/mL and 83% had CSF β-2 microglobulin <3 nmol/L at baseline. CONCLUSIONS: The addition of ABC to SBG for ADC patients was not efficacious, possibly because of the inefficacy of ABC per se, baseline drug resistance, prolonged benefit from existing therapy, difficulties with sample size calculations, and lack of disease activity. Assessment of these trial design factors is critical in the design of future ADC trials

    The catalytic subunit of the system L1 amino acid transporter (S<i>lc7a5</i>) facilitates nutrient signalling in mouse skeletal muscle

    Get PDF
    The System L1-type amino acid transporter mediates transport of large neutral amino acids (LNAA) in many mammalian cell-types. LNAA such as leucine are required for full activation of the mTOR-S6K signalling pathway promoting protein synthesis and cell growth. The SLC7A5 (LAT1) catalytic subunit of high-affinity System L1 functions as a glycoprotein-associated heterodimer with the multifunctional protein SLC3A2 (CD98). We generated a floxed Slc7a5 mouse strain which, when crossed with mice expressing Cre driven by a global promoter, produced Slc7a5 heterozygous knockout (Slc7a5+/-) animals with no overt phenotype, although homozygous global knockout of Slc7a5 was embryonically lethal. Muscle-specific (MCK Cre-mediated) Slc7a5 knockout (MS-Slc7a5-KO) mice were used to study the role of intracellular LNAA delivery by the SLC7A5 transporter for mTOR-S6K pathway activation in skeletal muscle. Activation of muscle mTOR-S6K (Thr389 phosphorylation) in vivo by intraperitoneal leucine injection was blunted in homozygous MS-Slc7a5-KO mice relative to wild-type animals. Dietary intake and growth rate were similar for MS-Slc7a5-KO mice and wild-type littermates fed for 10 weeks (to age 120 days) with diets containing 10%, 20% or 30% of protein. In MS-Slc7a5-KO mice, Leu and Ile concentrations in gastrocnemius muscle were reduced by ∼40% as dietary protein content was reduced from 30 to 10%. These changes were associated with >50% decrease in S6K Thr389 phosphorylation in muscles from MS-Slc7a5-KO mice, indicating reduced mTOR-S6K pathway activation, despite no significant differences in lean tissue mass between groups on the same diet. MS-Slc7a5-KO mice on 30% protein diet exhibited mild insulin resistance (e.g. reduced glucose clearance, larger gonadal adipose depots) relative to control animals. Thus, SLC7A5 modulates LNAA-dependent muscle mTOR-S6K signalling in mice, although it appears non-essential (or is sufficiently compensated by e.g. SLC7A8 (LAT2)) for maintenance of normal muscle mass

    The conserved C-terminus of the PcrA/UvrD helicase interacts directly with RNA polymerase

    Get PDF
    Copyright: © 2013 Gwynn et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Funding: This work was supported by a Wellcome Trust project grant to MD (Reference: 077368), an ERC starting grant to MD (Acronym: SM-DNA-REPAIR) and a BBSRC project grant to PM, NS and MD (Reference: BB/I003142/1). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD

    Recovery of Barotrauma Injuries in Chinook Salmon, Oncorhynchus tshawytscha from Exposure to Pile Driving Sound

    Get PDF
    Juvenile Chinook salmon, Oncorhynchus tshawytscha, were exposed to simulated high intensity pile driving signals to evaluate their ability to recover from barotrauma injuries. Fish were exposed to one of two cumulative sound exposure levels for 960 pile strikes (217 or 210 dB re 1 µPa2·s SELcum; single strike sound exposure levels of 187 or 180 dB re 1 µPa2⋅s SELss respectively). This was followed by an immediate assessment of injuries, or assessment 2, 5, or 10 days post-exposure. There were no observed mortalities from the pile driving sound exposure. Fish exposed to 217 dB re 1 µPa2·s SELcum displayed evidence of healing from injuries as post-exposure time increased. Fish exposed to 210 dB re 1 µPa2·s SELcum sustained minimal injuries that were not significantly different from control fish at days 0, 2, and 10. The exposure to 210 dB re 1 µPa2·s SELcum replicated the findings in a previous study that defined this level as the threshold for onset of injury. Furthermore, these data support the hypothesis that one or two Mild injuries resulting from pile driving exposure are unlikely to affect the survival of the exposed animals, at least in a laboratory environment

    Probiotic Bacteria Produce Conjugated Linoleic Acid Locally in the Gut That Targets Macrophage PPAR γ to Suppress Colitis

    Get PDF
    Inflammatory bowel disease (IBD) therapies are modestly successful and associated with significant side effects. Thus, the investigation of novel approaches to prevent colitis is important. Probiotic bacteria can produce immunoregulatory metabolites in vitro such as conjugated linoleic acid (CLA), a polyunsaturated fatty acid with potent anti-inflammatory effects. This study aimed to investigate the cellular and molecular mechanisms underlying the anti-inflammatory efficacy of probiotic bacteria using a mouse model of colitis. The immune modulatory mechanisms of VSL#3 probiotic bacteria and CLA were investigated in a mouse model of DSS colitis. Colonic specimens were collected for histopathology, gene expression and flow cytometry analyses. Immune cell subsets in the mesenteric lymph nodes (MLN), spleen, blood and colonic lamina propria cells were phenotypically and functionally characterized. Fecal samples and colonic contents were collected to determine the effect of VSL#3 and CLA on gut microbial diversity and CLA production. CLA and VSL#3 treatment ameliorated colitis and decreased colonic bacterial diversity, a finding that correlated with decreased gut pathology. Colonic CLA concentrations were increased in response to probiotic bacterial treatment, but without systemic distribution in blood. VSL#3 and CLA decreased macrophage accumulation in the MLN of mice with DSS colitis. The loss of PPAR γ in myeloid cells abrogated the protective effect of probiotic bacteria and CLA in mice with DSS colitis. Probiotic bacteria modulate gut microbial diversity and favor local production of CLA in the colon that targets myeloid cell PPAR γ to suppress colitis

    Serine phosphorylation regulates paxillin turnover during cell migration

    Get PDF
    BACKGROUND: Paxillin acts as an adaptor protein that localizes to focal adhesion. This protein is regulated during cell migration by phosphorylation on tyrosine, serine and threonine residues. Most of these phosphorylations have been implicated in the regulation of different steps of cell migration. The two major phosphorylation sites of paxillin in response to adhesion to an extracellular matrix are serines 188 and 190. However, the function of this phosphorylation event remains unknown. The purpose of this work was to determine the role of paxillin phosphorylation on residues S188 and S190 in the regulation of cell migration. RESULTS: We used NBT-II epithelial cells that can be induced to migrate when plated on collagen. To examine the role of paxillin serines 188/190 in cell migration, we constructed an EGFP-tagged paxillin mutant in which S188/S190 were mutated into unphosphorylatable alanine residues. We provide evidence that paxillin is regulated by proteasomal degradation following polyubiquitylation of the protein. During active cell migration on collagen, paxillin is protected from proteasome-dependent degradation. We demonstrate that phosphorylation of serines 188/190 is necessary for the protective effect of collagen. In an effort to understand the physiological relevance of paxillin protection from degradation, we show that cells expressing the paxillin S188/190A interfering mutant spread less, have reduced protrusive activity but migrate more actively. CONCLUSION: Our data demonstrate for the first time that serine-regulated degradation of paxillin plays a key role in the modulation of membrane dynamics and consequently, in the control of cell motility

    Bacteriophage- based tests for the detection of Mycobacterium tuberculosis in clinical specimens: a systematic review and meta- analysis

    Get PDF
    BACKGROUND: Sputum microscopy, the most important conventional test for tuberculosis, is specific in settings with high burden of tuberculosis and low prevalence of non tuberculous mycobacteria. However, the test lacks sensitivity. Although bacteriophage-based tests for tuberculosis have shown promising results, their overall accuracy has not been systematically evaluated. METHODS: We did a systematic review and meta-analysis of published studies to evaluate the accuracy of phage-based tests for the direct detection of M. tuberculosis in clinical specimens. To identify studies, we searched Medline, EMBASE, Web of science and BIOSIS, and contacted authors, experts and test manufacturers. Thirteen studies, all based on phage amplification method, met our inclusion criteria. Overall accuracy was evaluated using forest plots, summary receiver operating (SROC) curves, and subgroup analyses. RESULTS: The data suggest that phage-based assays have high specificity (range 0.83 to 1.00), but modest and variable sensitivity (range 0.21 to 0.88). The sensitivity ranged between 0.29 and 0.87 among smear-positive, and 0.13 to 0.78 among smear-negative specimens. The specificity ranged between 0.60 and 0.88 among smear-positive and 0.89 to 0.99 among smear-negative specimens. SROC analyses suggest that overall accuracy of phage-based assays is slightly higher than smear microscopy in direct head-to-head comparisons. CONCLUSION: Phage-based assays have high specificity but lower and variable sensitivity. Their performance characteristics are similar to sputum microscopy. Phage assays cannot replace conventional diagnostic tests such as microscopy and culture at this time. Further research is required to identify methods that can enhance the sensitivity of phage-based assays without compromising the high specificity

    The Interplay between NF-kappaB and E2F1 Coordinately Regulates Inflammation and Metabolism in Human Cardiac Cells

    Get PDF
    Pyruvate dehydrogenase kinase 4 (PDK4) inhibition by nuclear factor-κB (NF-κB) is related to a shift towards increased glycolysis during cardiac pathological processes such as cardiac hypertrophy and heart failure. The transcription factors estrogen-related receptor-α (ERRα) and peroxisome proliferator-activated receptor (PPAR) regulate PDK4 expression through the potent transcriptional coactivator PPARγ coactivator-1α (PGC-1α). NF-κB activation in AC16 cardiac cells inhibit ERRα and PPARβ/δ transcriptional activity, resulting in reduced PGC-1α and PDK4 expression, and an enhanced glucose oxidation rate. However, addition of the NF-κB inhibitor parthenolide to these cells prevents the downregulation of PDK4 expression but not ERRα and PPARβ/δ DNA binding activity, thus suggesting that additional transcription factors are regulating PDK4. Interestingly, a recent study has demonstrated that the transcription factor E2F1, which is crucial for cell cycle control, may regulate PDK4 expression. Given that NF-κB may antagonize the transcriptional activity of E2F1 in cardiac myocytes, we sought to study whether inflammatory processes driven by NF-κB can downregulate PDK4 expression in human cardiac AC16 cells through E2F1 inhibition. Protein coimmunoprecipitation indicated that PDK4 downregulation entailed enhanced physical interaction between the p65 subunit of NF-κB and E2F1. Chromatin immunoprecipitation analyses demonstrated that p65 translocation into the nucleus prevented the recruitment of E2F1 to the PDK4 promoter and its subsequent E2F1-dependent gene transcription. Interestingly, the NF-κB inhibitor parthenolide prevented the inhibition of E2F1, while E2F1 overexpression reduced interleukin expression in stimulated cardiac cells. Based on these findings, we propose that NF-κB acts as a molecular switch that regulates E2F1-dependent PDK4 gene transcription
    corecore