151 research outputs found

    Short Report: Influence of Centers for Disease Control Light Trap Position, Relative to a Human-Baited Bed Net, on Catches of Anopheles Gambiae and Culex Quinquefasciatus in Tanzania.

    Get PDF
    The best position for Centers for Disease Control (Atlanta, GA) light traps, in relation to human-occupied bed nets for trapping of host-seeking Anopheles gambiae Giles and Culex quinquefasciatus Say mosquitoes, was determined in Tanzania. Significantly higher catches were recorded for both species when the trap was positioned at the foot end of the bed, near the top of the net. Parity rates were significantly higher near the top of the net than at the level of the host. Since trap position affects the catch size and the proportion of infectious mosquitoes therein, standardized use of this sampling technique for estimating entomologic inoculation rates (i.e., the number of potentially infectious bites received over a certain period of time) is recommended

    Regional Initiatives in Support of Surveillance in East Africa: The East Africa Integrated Disease Surveillance Network (EAIDSNet) Experience.

    Get PDF
    The East African Integrated Disease Surveillance Network (EAIDSNet) was formed in response to a growing frequency of cross-border malaria outbreaks in the 1990s and a growing recognition that fragmented disease interventions, coupled with weak laboratory capacity, were making it difficult to respond in a timely manner to the outbreaks of malaria and other infectious diseases. The East Africa Community (EAC) partner states, with financial support from the Rockefeller Foundation, established EAIDSNet in 2000 to develop and strengthen the communication channels necessary for integrated cross-border disease surveillance and control efforts. The objective of this paper is to review the regional EAIDSNet initiative and highlight achievements and challenges in its implementation. Major accomplishments of EAIDSNet include influencing the establishment of a Department of Health within the EAC Secretariat to support a regional health agenda; successfully completing a regional field simulation exercise in pandemic influenza preparedness; and piloting a web-based portal for linking animal and human health disease surveillance. The strategic direction of EAIDSNet was shaped, in part, by lessons learned following a visit to the more established Mekong Basin Disease Surveillance (MBDS) regional network. Looking to the future, EAIDSNet is collaborating with the East, Central and Southern Africa Health Community (ECSA-HC), EAC partner states, and the World Health Organization to implement the World Bank-funded East Africa Public Health Laboratory Networking Project (EAPHLNP). The network has also begun lobbying East African countries for funding to support EAIDSNet activities

    SHORT COMMUNICATION: Urban malaria in Dodoma and Iringa, Tanzania

    Get PDF
    Cross sectional malaria parasitaemia and entomological surveys were carried out in urban Iringa and Dodoma in Tanzania. A total of 395 and 392 schoolchildren (age range= 6-15 years) were screened for malaria parasites in Iringa and Dodoma, respectively. Plasmodium falciparum was the predominant malaria parasite (Iringa= 100%, Dodoma= 97.8%). Malaria parasitaemia was observed in 14.9% and 12% of the schoolchildren in Iringa and Dodoma, respectively. The geometric mean parasite density for P. falciparum was higher (632 parasites/μl) in Iringa than in Dodoma (74.1 parasites/μl). The average spleen rates were 0.5% and 2% in Iringa and Dodoma, respectively. A slightly higher haemoglobin level was observed among schoolchildren in Dodoma (10.2g/dl) than in Iringa (9.5g/dl). Only a few Anopheles gambiae sensu lato were collected indoors in the two areas. On the average 47.3% and 80% of the children in Iringa and Dodoma, respectively were sleeping under mosquito nets. Although malaria endemicity in the two municipalities is low, unplanned rapid urbanisation is likely to change malaria epidemiology in Tanzania. Continuous malaria and mosquito density surveillance should therefore, form an in integral part of the malaria control strategies in urban areas. Communities should be continuously sensitised to use insecticide-treated mosquito nets and strengthen community-based environmental management to minimise malaria breeding sites. Keywords: urban, malaria, schoolchildren, Tanzania Tanzania Health Research Bulletin Vol. 8 (2) 2006: pp. 115-11

    A One-Health lens for anthrax

    Get PDF

    Health sector reform:situation analysis of 37 districts for the first phase of health sector reform

    Get PDF
    \ud This study was a collaborative undertaking between the National Institute for Medical Research and the Ministry of Health. The main aim was to obtain baseline information for 37 districts to be involved in the First Phase of Health Sector Reforms. The information is to be used to inform and guide the process, as well as providing a basis for evaluation of the impact of Health Sector Reform in the future. The data was collected by DHMT in each of the 37 districts. During the process two meetings were conducted. The first meeting discussed the catalogue and the methods of data collection. The second meeting rook the fom1 of feedback in which the results were discussed with DHMT. The meetings involved NIMR supervisors. In each of the study district, three catalogues were filled out. A copy was given to DMO’s office for local use, another copy was given to the RMO's office in the region involved. The research team retained the third copy.\u

    Spatial and Temporal Pattern of Rift Valley Fever Outbreaks in Tanzania; 1930 to 2007

    Get PDF
    Rift Valley fever (RVF)-like disease was first reported in Tanzania more than eight decades ago and the last large outbreak of the disease occurred in 2006–07. This study investigates the spatial and temporal pattern of RVF outbreaks in Tanzania over the past 80 years in order to guide prevention and control strategies. A retrospective study was carried out based on disease reporting data from Tanzania at district or village level. The data were sourced from the Ministries responsible for livestock and human health, Tanzania Meteorological Agency and research institutions involved in RVF surveillance and diagnosis. The spatial distribution of outbreaks was mapped using ArcGIS 10. The space-time permutation model was applied to identify clusters of cases, and a multivariable logistic regression model was used to identify risk factors associated with the occurrence of outbreaks in the district. RVF outbreaks were reported between December and June in 1930, 1947, 1957, 1960, 1963, 1968, 1977– 79, 1989, 1997–98 and 2006–07 in 39.2% of the districts in Tanzania. There was statistically significant spatio-temporal clustering of outbreaks. RVF occurrence was associated with the eastern Rift Valley ecosystem (OR = 6.14, CI: 1.96, 19.28), total amount of rainfall of .405.4 mm (OR = 12.36, CI: 3.06, 49.88), soil texture (clay [OR = 8.76, CI: 2.52, 30.50], and loam [OR = 8.79, CI: 2.04, 37.82]). RVF outbreaks were found to be distributed heterogeneously and transmission dynamics appeared to vary between areas. The sequence of outbreak waves, continuously cover more parts of the country. Whenever infection has been introduced into an area, it is likely to be involved in future outbreaks. The cases were more likely to be reported from the eastern Rift Valley than from the western Rift Valley ecosystem and from areas with clay and loam rather than sandy soil texture

    Factors influencing malaria control policy-making in Kenya, Uganda and Tanzania

    Get PDF
    Abstract Background Policy decisions for malaria control are often difficult to make as decision-makers have to carefully consider an array of options and respond to the needs of a large number of stakeholders. This study assessed the factors and specific objectives that influence malaria control policy decisions, as a crucial first step towards developing an inclusive malaria decision analysis support tool (MDAST). Methods Country-specific stakeholder engagement activities using structured questionnaires were carried out in Kenya, Uganda and Tanzania. The survey respondents were drawn from a non-random purposeful sample of stakeholders, targeting individuals in ministries and non-governmental organizations whose policy decisions and actions are likely to have an impact on the status of malaria. Summary statistics across the three countries are presented in aggregate. Results Important findings aggregated across countries included a belief that donor preferences and agendas were exerting too much influence on malaria policies in the countries. Respondents on average also thought that some relevant objectives such as engaging members of parliament by the agency responsible for malaria control in a particular country were not being given enough consideration in malaria decision-making. Factors found to influence decisions regarding specific malaria control strategies included donor agendas, costs, effectiveness of interventions, health and environmental impacts, compliance and/acceptance, financial sustainability, and vector resistance to insecticides. Conclusion Malaria control decision-makers in Kenya, Uganda and Tanzania take into account health and environmental impacts as well as cost implications of different intervention strategies. Further engagement of government legislators and other policy makers is needed in order to increase funding from domestic sources, reduce donor dependence, sustain interventions and consolidate current gains in malaria.http://deepblue.lib.umich.edu/bitstream/2027.42/109455/1/12936_2014_Article_3344.pd

    Changes in hydrodynamic, structural and geochemical properties in carbonate rock samples due to reactive transport

    Get PDF
    Reactive transport plays an important role in the development of a wide range of both anthropic and natural processes affecting geological media. To predict the consequences of reactive transport processes on structural and hydrodynamic properties of a porous media at large time and spatial scales, numerical modeling is a powerful tool. Nevertheless, such models, to be realistic, need geochemical, structural and hydrodynamic data inputs representative of the studied reservoir or material. Here, we present an experimental study coupling traditional laboratory measurements and percolation experiments in order to obtain the parameters that define rock heterogeneity, which can be altered during the percolation of a reactive fluid. In order to validate the experimental methodology and identify the role of the initial heterogeneities on the localization of the reactive transport processes, we used three different limestones with different petrophysical characteristics. We tracked the changes of geochemical, structural and hydrodynamic parameters in these samples induced by the percolation of an acid fluid by measuring, before and after the percolation experiment, petrophysical and hydrodynamic properties of the rocks.Peer ReviewedPostprint (published version

    COVID-19—Zoonosis or Emerging Infectious Disease?

    Get PDF
    The World Health Organization defines a zoonosis as any infection naturally transmissible from vertebrate animals to humans. The pandemic of Coronavirus disease (COVID-19) caused by SARS-CoV-2 has been classified as a zoonotic disease, however, no animal reservoir has yet been found, so this classification is premature. We propose that COVID-19 should instead be classified an “emerging infectious disease (EID) of probable animal origin.” To explore if COVID-19 infection fits our proposed re-categorization vs. the contemporary definitions of zoonoses, we reviewed current evidence of infection origin and transmission routes of SARS-CoV-2 virus and described this in the context of known zoonoses, EIDs and “spill-over” events. Although the initial one hundred COVID-19 patients were presumably exposed to the virus at a seafood Market in China, and despite the fact that 33 of 585 swab samples collected from surfaces and cages in the market tested positive for SARS-CoV-2, no virus was isolated directly from animals and no animal reservoir was detected. Elsewhere, SARS-CoV-2 has been detected in animals including domesticated cats, dogs, and ferrets, as well as captive-managed mink, lions, tigers, deer, and mice confirming zooanthroponosis. Other than circumstantial evidence of zoonotic cases in mink farms in the Netherlands, no cases of natural transmission from wild or domesticated animals have been confirmed. More than 40 million human COVID-19 infections reported appear to be exclusively through human-human transmission. SARS-CoV-2 virus and COVID-19 do not meet the WHO definition of zoonoses. We suggest SARS-CoV-2 should be re-classified as an EID of probable animal origin
    corecore