23 research outputs found

    Lipid profile frequency and the prevalence of dyslipidaemia from biochemical tests at Saint Louis University Hospital in Senegal

    Get PDF
    Introduction: The aim of this study was to evaluate the frequency of lipid profile requests and the  prevalence of dyslipidemia in patients at the biochemistry laboratory of St. Louis University Hospital, as well as their correlation with sex and age. Methods: This was a retrospective study reviewing 14,116  laboratory results of patients of both sexes, over a period of six months (January-June 2013) regardless of the indication for the request. The lipid parameters included were: Total cholesterol, HDL-cholesterol, LDL-cholesterol, trig lycerides with normal values defined as follows: Total cholesterol (<2g/l), HDL- cholesterol (>0,40g/l), LDL- cholesterol (<1,30g/l) and Triglycerides (<1,50g/l). Results: The average age of our study population was 55.15 years with a female predorminance (M/F=0.60). The age group most represented was that between 55-64 years. The frequency of lipid profile request in our sample was 9.41% (or 1,329). The overall prevalence of isolated hypercholesterolemia, hyperLDLaemia,  hypoHDLaemia, hypertriglyceridaemia, and mixed hyperlipidemia were respectively 60.91%, 66.27%, 26.58%, 4.57% and 2.75%. Hypercholesterolemia, hyperLDLaemia, hypertriglyceridaemia and mixed hyperlipidaemia were higher in women with respectively 66.22%, 67.98%, 4.58%, 2.89% than in men (52.01%, 62.81%, 4.44% and 2.40% respectively). On the other hand, the prevalence of hypoHDLaemia was higher in males (32.19%) compared to females (23.76%). Hypercholesterolemia correlated  significantly with age and sex. Conclusion: Our study showed a relatively low request rate for lipid profile and a high prevalence of dyslipidaemia hence the importance of conducting a major study on the prevalence of dyslipidaemia and associated factors in the Senegalese population.Key words: Lipid profile, dyslipidaemia, prevalence, Senega

    Remodeling of the malaria parasite and host human red cell by vesicle amplification that induces artemisinin resistance

    Get PDF
    Artemisinin resistance threatens worldwide malaria control and elimination. Elevation of phosphatidylinositol-3-phosphate (PI3P) can induce resistance in blood stages of Plasmodium falciparum The parasite unfolded protein response (UPR) has also been implicated as a proteostatic mechanism that may diminish artemisinin-induced toxic proteopathy. How PI3P acts and its connection to the UPR remain unknown, although both are conferred by mutation in P falciparum Kelch13 (K13), the marker of artemisinin resistance. Here we used cryoimmunoelectron microscopy to show that K13 concentrates at PI3P tubules/vesicles of the parasite's endoplasmic reticulum (ER) in infected red cells. K13 colocalizes and copurifies with the major virulence adhesin PfEMP1. The PfEMP1-K13 proteome is comprehensively enriched in multiple proteostasis systems of protein export, quality control, and folding in the ER and cytoplasm and UPR. Synthetic elevation of PI3P that induces resistance in absence of K13 mutation also yields signatures of proteostasis and clinical resistance. These findings imply a key role for PI3P-vesicle amplification as a mechanism of resistance of infected red cells. As validation, the major resistance mutation K13C580Y quantitatively increased PI3P tubules/vesicles, exporting them throughout the parasite and the red cell. Chemical inhibitors and fluorescence microscopy showed that alterations in PfEMP1 export to the red cell and cytoadherence of infected cells to a host endothelial receptor are features of multiple K13 mutants. Together these data suggest that amplified PI3P vesicles disseminate widespread proteostatic capacity that may neutralize artemisinins toxic proteopathy and implicate a role for the host red cell in artemisinin resistance. The mechanistic insights generated will have an impact on malaria drug development

    Gene expression profiling in blood from cerebral malaria patients and mild malaria patients living in Senegal

    Get PDF
    International audienceBACKGROUND:Plasmodium falciparum malaria remains a major health problem in Africa. The mechanisms of pathogenesis are not fully understood. Transcriptomic studies may provide new insights into molecular pathways involved in the severe form of the disease.METHODS:Blood transcriptional levels were assessed in patients with cerebral malaria, non-cerebral malaria, or mild malaria by using microarray technology to look for gene expression profiles associated with clinical status. Multi-way ANOVA was used to extract differentially expressed genes. Network and pathways analyses were used to detect enrichment for biological pathways.RESULTS:We identified a set of 443 genes that were differentially expressed in the three patient groups after applying a false discovery rate of 10%. Since the cerebral patients displayed a particular transcriptional pattern, we focused our analysis on the differences between cerebral malaria patients and mild malaria patients. We further found 842 differentially expressed genes after applying a false discovery rate of 10%. Unsupervised hierarchical clustering of cerebral malaria-informative genes led to clustering of the cerebral malaria patients. The support vector machine method allowed us to correctly classify five out of six cerebral malaria patients and six of six mild malaria patients. Furthermore, the products of the differentially expressed genes were mapped onto a human protein-protein network. This led to the identification of the proteins with the highest number of interactions, including GSK3B, RELA, and APP. The enrichment analysis of the gene functional annotation indicates that genes involved in immune signalling pathways play a role in the occurrence of cerebral malaria. These include BCR-, TCR-, TLR-, cytokine-, FcεRI-, and FCGR- signalling pathways and natural killer cell cytotoxicity pathways, which are involved in the activation of immune cells. In addition, our results revealed an enrichment of genes involved in Alzheimer's disease.CONCLUSIONS:In the present study, we examine a set of genes whose expression differed in cerebral malaria patients and mild malaria patients. Moreover, our results provide new insights into the potential effect of the dysregulation of gene expression in immune pathways. Host genetic variation may partly explain such alteration of gene expression. Further studies are required to investigate this in African populations

    A molecular mechanism of artemisinin resistance in Plasmodium falciparum malaria

    Get PDF
    Artemisinins are the cornerstone of anti-malarial drugs. Emergence and spread of resistance to them raises risk of wiping out recent gains achieved in reducing worldwide malaria burden and threatens future malaria control and elimination on a global level. Genome-wide association studies (GWAS) have revealed parasite genetic loci associated with artemisinin resistance. However, there is no consensus on biochemical targets of artemisinin. Whether and how these targets interact with genes identified by GWAS, remains unknown. Here we provide biochemical and cellular evidence that artemisinins are potent inhibitors of Plasmodium falciparum phosphatidylinositol-3-kinase (PfPI3K), revealing an unexpected mechanism of action. In resistant clinical strains, increased PfPI3K was associated with the C580Y mutation in P. falciparum Kelch13 (PfKelch13), a primary marker of artemisinin resistance. Polyubiquitination of PfPI3K and its binding to PfKelch13 were reduced by the PfKelch13 mutation, which limited proteolysis of PfPI3K and thus increased levels of the kinase, as well as its lipid product phosphatidylinositol-3-phosphate (PI3P). We find PI3P levels to be predictive of artemisinin resistance in both clinical and engineered laboratory parasites as well as across non-isogenic strains. Elevated PI3P induced artemisinin resistance in absence of PfKelch13 mutations, but remained responsive to regulation by PfKelch13. Evidence is presented for PI3P-dependent signalling in which transgenic expression of an additional kinase confers resistance. Together these data present PI3P as the key mediator of artemisinin resistance and the sole PfPI3K as an important target for malaria elimination

    NCR3 polymorphism, haematological parameters, and severe malaria in Senegalese patients

    Get PDF
    Background Host factors, including host genetic variation, have been shown to influence the outcome of Plasmodium falciparum infection. Genome-wide linkage studies have mapped mild malaria resistance genes on chromosome 6p21, whereas NCR3-412 polymorphism (rs2736191) lying within this region was found to be associated with mild malaria. Methods Blood samples were taken from 188 Plasmodium falciparum malaria patients (76 mild malaria patients, 85 cerebral malaria patients, and 27 severe non-cerebral malaria patients). NCR3-412 (rs2736191) was analysed by sequencing, and haematological parameters were measured. Finally, their association with clinical phenotypes was assessed. Results We evidenced an association of thrombocytopenia with both cerebral malaria and severe non-cerebral malaria, and of an association of high leukocyte count with cerebral malaria. Additionally, we found no association of NCR3-412 with either cerebral malaria, severe non-cerebral malaria, or severe malaria after grouping cerebral malaria and severe non-cerebral malaria patients. Conclusions Our results suggest that NCR3 genetic variation has no effect, or only a small effect on the occurrence of severe malaria, although it has been strongly associated with mild malaria. We discuss the biological meaning of these results. Besides, we confirmed the association of thrombocytopenia and high leukocyte count with severe malaria phenotypes

    Molecular and cellular aspects of the modifications induced by the human malaria parasite Plasmodium falciparum in the infected red blood cells.

    No full text
    Ma thèse s'inscrit dans l'étude des modifications du globule rouge humain induites par P. falciparum. Ces modifications qui représentent une remarquable adaptation du parasite à un environnement plus complexe qu'il n'y paraît au premier abord et expliquent sa persistance chez l'Homme sont détaillées dans une revue et un chapitre de livre dont je suis co-auteur. Mes travaux de recherche ont porté sur la caractérisation fonctionnelle des structures de Maurer, un compartiment membranaire exporté par le parasite dans le globule rouge parasitaire et directement lié à la physiopathologie du paludisme grave. J'ai contribué à la caractérisation fonctionnelle de nouvelles protéines de ces structures, codées par trois familles multigéniques sub-télomériques en cluster avec la famille Pfmc-2tm, et présentant de façon étonnante un fort degré de conservation (article 1). La diminution d'expression de ces gènes, obtenue par titration d'un facteur transcriptionnel, entraine un défaut de libération des mérozoïtes. Mon deuxième projet porte sur l'identification des modalités d'export de la protéine transmembranaire résidente des structures de Maurer PfSBP1. Mes travaux montrent que PfSBP1 est exportée sous forme soluble dans le cytoplasme érythrocytaire, en interaction avec le complexe chaperon parasitaire PfTCP1 (article 2).Plasmodium falciparum causes the most severe forms of human malaria, a pathology associated with the erythrocytic asexual stages of the parasite. My work focused on the remodeling of the infected erythrocytes induced by P. falciparum and detailed in a review and a book chapter that I co-authored. These modifications illustrate a remarkable adaptation of P. falciparum resulting in its persistence in humans. My PhD thesis was dedicated to the functional characterization of Maurer's clefts, a membrane compartment transposed by the parasite in the cytoplasm of its host cell, and central to the export of virulence factors to the host cell surface. I have conducted two projects and contributed first to the functional characterization of novel exported protein encoded by three highly conserved multigene sub-telomeric families in cluster with the Pfmc-2tm family. Down regulation of these gene families by promoter titration impacted the release of infectious merozoites from the host cell (annex 1). My second project was dedicated to the identification of the modality of export of the resident and Maurer's clefts transmembrane protein PfSBP1. I have shown that PfSBP1 is exported as a soluble protein in the host cell cytoplasm in interaction with the parasite Thermosome complex protein 1 (PfTCP1) chaperone complex (annex 2)

    Aspects moléculaires et cellulaires des modifications induites par Plasmodium falciparum dans le globule rouge humain parasité

    No full text
    Ma thèse s'inscrit dans l'étude des modifications du globule rouge humain induites par P. falciparum. Ces modifications qui représentent une remarquable adaptation du parasite à un environnement plus complexe qu'il n'y paraît au premier abord et expliquent sa persistance chez l'Homme sont détaillées dans une revue et un chapitre de livre dont je suis co-auteur. Mes travaux de recherche ont porté sur la caractérisation fonctionnelle des structures de Maurer, un compartiment membranaire exporté par le parasite dans le globule rouge parasitaire et directement lié à la physiopathologie du paludisme grave. J'ai contribué à la caractérisation fonctionnelle de nouvelles protéines de ces structures, codées par trois familles multigéniques sub-télomériques en cluster avec la famille Pfmc-2tm, et présentant de façon étonnante un fort degré de conservation (article 1). La diminution d'expression de ces gènes, obtenue par titration d'un facteur transcriptionnel, entraine un défaut de libération des mérozoïtes. Mon deuxième projet porte sur l'identification des modalités d'export de la protéine transmembranaire résidente des structures de Maurer PfSBP1. Mes travaux montrent que PfSBP1 est exportée sous forme soluble dans le cytoplasme érythrocytaire, en interaction avec le complexe chaperon parasitaire PfTCP1 (article 2).Plasmodium falciparum causes the most severe forms of human malaria, a pathology associated with the erythrocytic asexual stages of the parasite. My work focused on the remodeling of the infected erythrocytes induced by P. falciparum and detailed in a review and a book chapter that I co-authored. These modifications illustrate a remarkable adaptation of P. falciparum resulting in its persistence in humans. My PhD thesis was dedicated to the functional characterization of Maurer's clefts, a membrane compartment transposed by the parasite in the cytoplasm of its host cell, and central to the export of virulence factors to the host cell surface. I have conducted two projects and contributed first to the functional characterization of novel exported protein encoded by three highly conserved multigene sub-telomeric families in cluster with the Pfmc-2tm family. Down regulation of these gene families by promoter titration impacted the release of infectious merozoites from the host cell (annex 1). My second project was dedicated to the identification of the modality of export of the resident and Maurer's clefts transmembrane protein PfSBP1. I have shown that PfSBP1 is exported as a soluble protein in the host cell cytoplasm in interaction with the parasite Thermosome complex protein 1 (PfTCP1) chaperone complex (annex 2).MONTPELLIER-BU Sciences (341722106) / SudocSudocFranceF

    Human erythrocyte remodelling during Plasmodium falciparum malaria parasite growth and egress

    No full text
    The intra-erythrocyte growth and survival of the malarial parasite Plasmodium falciparum is responsible for both uncomplicated and severe malaria cases and depends on the parasite's ability to remodel its host cell. Host cell remodelling has several functions for the parasite, such as acquiring nutrients from the extracellular milieu because of the loss of membrane transporters upon erythrocyte differentiation, avoiding splenic clearance by conferring cytoadhesive properties to the infected erythrocyte, escaping the host immune response by exporting antigenically variant proteins at the red blood cell surface. In addition, parasite-induced changes at the red blood cell membrane and sub-membrane skeleton are also necessary for the efficient release of the parasite progeny from the host cell. Here we review these cellular and molecular changes, which might not only sustain parasite growth but also prepare, at a very early stage, the last step of egress from the host cell

    New Export Pathway in Plasmodium falciparum -Infected Erythrocytes: Role of the Parasite Group II Chaperonin, PfTRiC

    No full text
    International audienceThe export of numerous proteins to the plasma membrane of its host erythrocyte is essential for the virulence and survival of the malaria parasite Plasmodium falciparum. The Maurer's clefts, membrane structures transposed by the parasite in the cytoplasm of its host erythrocyte, play the role of a marshal platform for such exported parasite proteins. We identify here the export pathway of three resident proteins of the Maurer's clefts membrane: the proteins are exported as soluble forms in the red cell cytoplasm to the Maurer's clefts membrane in association with the parasite group II chaperonin (PfTRIC), a chaperone complex known to bind and address a large spectrum of unfolded proteins to their final location. We have also located the domain of interaction with PfTRiC within the amino‐terminal domain of one of these Maurer's cleft proteins, PfSBP1. Because several Maurer's cleft membrane proteins with different export motifs seem to follow the same route, we propose a general role for PfTRiC in the trafficking of malarial parasite proteins to the host erythrocyte
    corecore