185 research outputs found
Morphology-driven electrical and optical properties in graded hierarchical transparent conducting Al:ZnO
Graded Al-doped ZnO layers, constituted by a mesoporous forest like system
evolving into a compact transparent conductor, were synthesized by Pulsed Laser
Deposition with different morphology to study the correlation with functional
properties. Morphology was monitored by measuring the resulting surface
roughness and its effects on electrical conductivity (especially carrier
mobility, which significantly decreases with increasing roughness) allow to
discuss the limitations in conduction mechanisms. Significant changes in light
scattering capability due to variations in morphology are also investigated and
discussed to study the correlation between morphology and functional
properties.Comment: 11 pages, 4 figure
Phase-selective growth of - vs -GaO and (InGa)O by In-mediated metal exchange catalysis in plasma-assisted molecular beam epitaxy
Its piezo- and potentially ferroelectric properties make the metastable kappa
polymorph of GaO an interesting material for multiple applications,
while In-incorporation into any polymorphs of GaO allows to lower their
bandgap. In this work, we provide a guideline to achieve single phase
-, -GaO as well as their (InGa)O
alloys up to x = 0.14 and x = 0.17 respectively, using In-mediated metal
exchange catalysis in plasma assisted molecular beam epitaxy (MEXCAT-MBE). The
polymorph transition from to is also addressed, highlighting
the fundamental role played by the thermal stability of the
-GaO. Additionally, we also demonstrate the possibility to grow
(01) -GaO on top of -AlO (0001) at
temperatures at least 100 {\deg}C above those achievable with conventional
non-catalyzed MBE, opening the road for increased crystal quality in
heteroepitaxy. The role of the substrate, as well as strain and structural
defects in the growth of -GaO is also investigated by growing
simultaneously on three different materials: (i) -AlO (0001),
(ii) 20 nm of (01) -GaO on -AlO (0001)
and (iii) (01) -GaO single crystal.Comment: Main text: 7 pages, 4 figures; Supplementary: 6 pages, 9 figure
Vibrational - Electrical Properties Relationship in Donor Doped TiO2 by Raman Spectroscopy
Transparent conducting TiO2, obtained by Nb or Ta doping of the anatase structure, is gaining increasing attention for the development of transparent electrodes. Usually, regardless the deposition technique, a crystallization process in reducing atmosphere is necessary to achieve large mobility; in addition, electrical and optical properties are also strongly sensitive to the oxygen deposition pressure. These facts reveal that the defect chemistry of donor doped TiO2 is not trivial and involves a strict interplay among extrinsic dopant atoms, oxygen vacancies and âelectron killerâ defects such as Ti vacancies and O interstitials. We here present a Raman characterization of donor-doped TiO2 films synthesized under several deposition and post-annealing conditions, employing different doping levels and dopant elements (i.e.
Ta and Nb). Correlations between structure, crystallinity, shift and width of Raman peaks and electrical properties are shown and discussed. In particular, a clear relationship between the shift of the Eg(1) anatase Raman mode and the charge carrier density is found, while the B1g(1) mode connected to Ti-Ti vibrations is significantly affected by the extrinsic doping level. In this complex framework Raman
spectroscopy can provide an invaluable contribution towards understanding the material structure and its influence on the functional properties
Conformational rearrangements in the transmembrane domain of CNGA1 channels revealed by single-molecule force spectroscopy
Cyclic nucleotide-gated (CNG) channels are activated by binding of cyclic nucleotides. Although structural studies have identified the channel pore and selectivity filter, conformation changes associated with gating remain poorly understood. Here we combine single-molecule force spectroscopy (SMFS) with mutagenesis, bioinformatics and electrophysiology to study conformational changes associated with gating. By expressing functional channels with SMFS fingerprints in Xenopus laevis oocytes, we were able to investigate gating of CNGA1 in a physiological-like membrane. Force spectra determined that the S4 transmembrane domain is mechanically coupled to S5 in the closed state, but S3 in the open state. We also show there are multiple pathways for the unfolding of the transmembrane domains, probably caused by a different degree of \u3b1-helix folding. This approach demonstrates that CNG transmembrane domains have dynamic structure and establishes SMFS as a tool for probing conformational change in ion channels
Dendritic cells delivered inside human carcinomas are sequestered by interleukin-8
In the course of a clinical trial consisting of intratumoral injections of dendritic cells (DCs) transfected to produce interleukin-12, the use of (111)In-labeled tracing doses of DCs showed that most DCs remained inside tumor tissue, instead of migrating out. In search for factors that could explain this retention, it was found that tumors from patients suffering hepatocellular carcinoma, colorectal or pancreatic cancer were producing IL-8 and that this chemokine attracted monocyte-derived dendritic cells that uniformly express both IL-8 receptors CXCR1 and CXCR2. Accordingly, neutralizing antihuman IL-8 monoclonal antibodies blocked the chemotactic attraction of DCs by recombinant IL-8, as well as by the serum of the patients or culture supernatants of human colorectal carcinomas. In addition, tissue culture supernatants of colon carcinoma cells inhibited DC migration induced by MIP-3beta in an IL-8-dependent fashion. IL-8 production in malignant tissue and the responsiveness of DCs to IL-8 are a likely explanation of the clinical images, which suggest retention of DCs inside human malignant lesions. Impairment of DC migration toward lymphoid tissue could be involved in cancer immune evasion
Tuning of Electrical and Optical Properties of Highly Conducting and Transparent Ta-Doped TiO2 Polycrystalline Films
We present a detailed study on polycrystalline transparent conducting Ta-doped TiO2 films, obtained by room temperature pulsed laser deposition followed by an annealing treatment at 550°C in vacuum. The effect of Ta as a dopant element and of different synthesis conditions are explored in order to assess the relationship between material structure and functional properties, i.e. electrical conductivity and optical transparency. We show that for the doped samples it is possible to achieve low resistivity (of the order of 5Ă10-4 Ωcm) coupled with transmittance values exceeding 80% in the visible range, showing the potential of polycrystalline Ta:TiO2 for application as a transparent electrode in novel photovoltaic devices. The presence of trends in the structural (crystalline domain size, anatase cell parameters), electrical (resistivity, charge carrier density and mobility) and optical (transmittance, optical band gap, effective mass) properties as a function of the oxygen background pressures and laser fluence used during the deposition process and of the annealing atmosphere is discussed, and points towards a complex defect chemistry ruling the material behavior. The large mobility values obtained in this work for Ta:TiO2 polycrystalline films (up to 13 cm2V-1s-1) could represent a definitive advantage with respect to the more studied Nb-doped TiO2
Dendritic Cells Take up and Present Antigens from Viable and Apoptotic Polymorphonuclear Leukocytes
Dendritic cells (DC) are endowed with the ability to cross-present antigens from other cell types to cognate T cells. DC are poised to meet polymorphonuclear leukocytes (PMNs) as a result of being co-attracted by interleukin-8 (IL-8), for instance as produced by tumor cells or infected tissue. Human monocyte-derived and mouse bone marrow-derived DC can readily internalize viable or UV-irradiated PMNs. Such internalization was abrogated at 4°C and partly inhibited by anti-CD18 mAb. In mice, DC which had internalized PMNs containing electroporated ovalbumin (OVA) protein, were able to cross-present the antigen to CD8 (OT-1) and CD4 (OT-2) TCR-transgenic T cells. Moreover, in humans, tumor cell debris is internalized by PMNs and the tumor-cell material can be subsequently taken up from the immunomagnetically re-isolated PMNs by DC. Importantly, if human neutrophils had endocytosed bacteria, they were able to trigger the maturation program of the DC. Moreover, when mouse PMNs with E. coli in their interior are co-injected in the foot pad with DC, many DC loaded with fluorescent material from the PMNs reach draining lymph nodes. Using CT26 (H-2d) mouse tumor cells, it was observed that if tumor cells are intracellularly loaded with OVA protein and UV-irradiated, they become phagocytic prey of H-2d PMNs. If such PMNs, that cannot present antigens to OT-1 T cells, are immunomagnetically re-isolated and phagocytosed by H-2b DC, such DC productively cross-present OVA antigen determinants to OT-1 T cells. Cross-presentation to adoptively transferred OT-1 lymphocytes at draining lymph nodes also take place when OVA-loaded PMNs (H-2d) are coinjected in the footpad of mice with autologous DC (H-2b). In summary, our results indicate that antigens phagocytosed by short-lived PMNs can be in turn internalized and productively cross-presented by DC
- âŠ