28 research outputs found

    Prognostic Value of [18F]-Fluoro-Deoxy-Glucose PET/CT, S100 or MIA for Assessment of Cancer-Associated Mortality in Patients with High Risk Melanoma

    Get PDF
    PURPOSE: To assess the prognostic value of FDG PET/CT compared to the tumor markers S100B and melanoma inhibitory activity (MIA) in patients with high risk melanoma. METHODS: Retrospective study in 125 consecutive patients with high risk melanoma that underwent FDG PET/CT for re-staging. Diagnostic accuracy and prognostic value was determined for FDG PET/CT as well as for S100B and MIA. As standard of reference, cytological, histological, PET/CT or MRI follow-up findings as well as clinical follow-up were used. RESULTS: Of 125 patients, FDG PET/CT was positive in 62 patients. 37 (29.6%) patients had elevated S100B (>100 pg/ml) and 24 (20.2%) had elevated MIA (>10 pg/ml) values. Overall specificities for FDG PET/CT, S100B and MIA were 96.8% (95% CI, 89.1% to 99.1%), 85.7% (75.0% to 92.3%), and 95.2% (86.9% to 98.4%), corresponding sensitivities were 96.8% (89.0% to 99.1%), 45.2% (33.4% to 55.5%), and 36.1% (25.2% to 48.6%), respectively. The negative predictive values (NPV) for PET/CT, S100B, and MIA were 96.8% (89.1% to 99.1%), 61.4% (50.9% to 70.9%), and 60.6% (50.8% to 69.7%). The positive predictive values (PPV) were 96.7% (89.0% to 99.1%), 75.7% (59.9% to 86.6%), and 88.0% (70.0% to 95.8%). Patients with elevated S100B- or MIA values or PET/CT positive findings showed a significantly (p<0.001 each, univariate Cox regression models) higher risk of melanoma associated death which was increased 4.2-, 6.5- or 17.2-fold, respectively. CONCLUSION: PET/CT has a higher prognostic power in the assessment of cancer-associated mortality in melanoma patients compared with S100 and MIA

    RAGE does not contribute to renal injury and damage upon ischemia/reperfusion-induced injury.

    Get PDF
    Item does not contain fulltextThe receptor for advanced glycation end products (RAGE) mediates a variety of inflammatory responses in renal diseases, but its role in renal ischemia/reperfusion (I/R) injury is unknown. We showed that during renal I/R, RAGE ligands HMGB1 and S100B are expressed. However, RAGE deficiency does not affect renal injury and function upon I/R-induced injury

    S100A1: A Multifaceted Therapeutic Target in Cardiovascular Disease

    Get PDF
    Cardiovascular disease is the leading cause of death worldwide, showing a dramatically growing prevalence. It is still associated with a poor clinical prognosis, indicating insufficient long-term treatment success of currently available therapeutic strategies. Investigations of the pathomechanisms underlying cardiovascular disorders uncovered the Ca2+ binding protein S100A1 as a critical regulator of both cardiac performance and vascular biology. In cardiomyocytes, S100A1 was found to interact with both the sarcoplasmic reticulum ATPase (SERCA2a) and the ryanodine receptor 2 (RyR2), resulting in substantially improved Ca2+ handling and contractile performance. Additionally, S100A1 has been described to target the cardiac sarcomere and mitochondria, leading to reduced pre-contractile passive tension as well as enhanced oxidative energy generation. In endothelial cells, molecular analyses revealed a stimulatory effect of S100A1 on endothelial NO production by increasing endothelial nitric oxide synthase activity. Emphasizing the pathophysiological relevance of S100A1, myocardial infarction in S100A1 knockout mice resulted in accelerated transition towards heart failure and excessive mortality in comparison with wild-type controls. Mice lacking S100A1 furthermore displayed significantly elevated blood pressure values with abrogated responsiveness to bradykinin. On the other hand, numerous studies in small and large animal heart failure models showed that S100A1 overexpression results in reversed maladaptive myocardial remodeling, long-term rescue of contractile performance, and superior survival in response to myocardial infarction, indicating the potential of S100A1-based therapeutic interventions. In summary, elaborate basic and translational research established S100A1 as a multifaceted therapeutic target in cardiovascular disease, providing a promising novel therapeutic strategy to future cardiologists

    Lithium suppression of tau induces brain iron accumulation and neurodegeneration

    Get PDF
    Lithium is a first-line therapy for bipolar affective disorder. However, various adverse effects, including a Parkinson-like hand tremor, often limit its use. The understanding of the neurobiological basis of these side effects is still very limited. Nigral iron elevation is also a feature of Parkinsonian degeneration that may be related to soluble tau reduction. We found that magnetic resonance imaging T2 relaxation time changes in subjects commenced on lithium therapy were consistent with iron elevation. In mice, lithium treatment lowers brain tau levels and increases nigral and cortical iron elevation that is closely associated with neurodegeneration, cognitive loss and parkinsonian features. In neuronal cultures lithium attenuates iron efflux by lowering tau protein that traffics amyloid precursor protein to facilitate iron efflux. Thus, tau- and amyloid protein precursor-knockout mice were protected against lithium-induced iron elevation and neurotoxicity. These findings challenge the appropriateness of lithium as a potential treatment for disorders where brain iron is elevated (for example, Alzheimer’s disease), and may explain lithium-associated motor symptoms in susceptible patients
    corecore