148 research outputs found

    The 3D numerical simulation of near-source ground motion during the Marsica earthquake, central Italy, 100 years later

    Get PDF
    In this paper we show 3D physics-based numerical simulations of ground motion during one of the most devastating earthquakes in the recent Italian history, occurred on Jan 13, 1915, Marsica, Central Italy. The results provide a realistic estimate of the earthquake ground motion and fit reasonably well both the geodetic measurements of permanent ground settlement, and the observed macroseismic distribution of damage. In addition, these results provide a very useful benchmark to improve the current knowledge of near-source earthquake ground motion, including evaluation of the best distance metrics to describe the spatial variability of the peak values of ground motion, the relative importance of fault normal vs fault parallel components, the conditions under which vertical ground motion may prevail, as well as the adequacy of 1D vs 3D modelling of site amplification effects

    Dispersion-dissipation analysis of 3D continuous and discontinuous spectral element methods for the elastodynamics equation

    Get PDF
    In this paper we present a three dimensional dispersion and dissipation analysis for both the semi discrete and the fully discrete approximation of the elastodynamics equation based on the plane wave method. For space discretization we compare different approximation strategies, namely the continuous and the discontinuous spectral element method on both tetrahedral and hexahedral elements. For time discretization we employ a leapfrog time integration scheme. Several numerical results are presented and discussed

    Exploring hypotheses of the actions of TGF-beta 1 in epidermal wound healing using a 3D computational multiscale model of the human epidermis

    Get PDF
    In vivo and in vitro studies give a paradoxical picture of the actions of the key regulatory factor TGF-beta 1 in epidermal wound healing with it stimulating migration of keratinocytes but also inhibiting their proliferation. To try to reconcile these into an easily visualized 3D model of wound healing amenable for experimentation by cell biologists, a multiscale model of the formation of a 3D skin epithelium was established with TGF-beta 1 literature-derived rule sets and equations embedded within it. At the cellular level, an agent-based bottom-up model that focuses on individual interacting units ( keratinocytes) was used. This was based on literature-derived rules governing keratinocyte behavior and keratinocyte/ECM interactions. The selection of these rule sets is described in detail in this paper. The agent-based model was then linked with a subcellular model of TGF-beta 1 production and its action on keratinocytes simulated with a complex pathway simulator. This multiscale model can be run at a cellular level only or at a combined cellular/subcellular level. It was then initially challenged ( by wounding) to investigate the behavior of keratinocytes in wound healing at the cellular level. To investigate the possible actions of TGF-beta 1, several hypotheses were then explored by deliberately manipulating some of these rule sets at subcellular levels. This exercise readily eliminated some hypotheses and identified a sequence of spatial-temporal actions of TGF-beta 1 for normal successful wound healing in an easy-to-follow 3D model. We suggest this multiscale model offers a valuable, easy-to-visualize aid to our understanding of the actions of this key regulator in wound healing, and provides a model that can now be used to explore pathologies of wound healing

    Effect of dietary supplementation with ultramicronized palmitoylethanolamide in maintaining remission in cats with nonflea hypersensitivity dermatitis: a double-blind, multicentre, randomized, placebo-controlled study

    Get PDF
    Background Feline nonflea hypersensitivity dermatitis (NFHD) is a frequent cause of over-grooming, scratching and skin lesions. Multimodal therapy often is necessary. Hypothesis/Objectives To investigate the efficacy of ultramicronized palmitoylethanolamide (PEA-um) in maintaining methylprednisolone-induced remission in NFHD cats. Animals Fifty-seven NFHD cats with nonseasonal pruritus were enrolled originally, of which 25 completed all study requirements to be eligible for analysis. Methods and materials Cats were randomly assigned to PEA-um (15 mg/kg per os, once daily; n = 29) or placebo (n = 28) while receiving a 28 day tapering methylprednisolone course. Cats responding favourably to methylprednisolone were then administered only PEA-um (n = 21) or placebo (n = 23) for another eight weeks, followed by a four week long treatment-free period. Cats were maintained in the study until relapse or study end, whichever came first. Primary outcome was time to relapse. Secondary outcomes were pruritus Visual Analog Scale (pVAS), SCORing Feline Allergic Dermatitis scale (SCORFAD) and owner Global Assessment Score (GAS). Results Mean relapse time was 40.5 days (+/- 7.8 SE) in PEA-um treated cats (n = 13) and 22.2 days (+/- 3.7 SE) for placebo (n = 12; P = 0.04). On Day 28, the severity of pruritus was lower in the PEA-um treated cats compared to placebo (P = 0.03). Mean worsening of pruritus at the final study day was lower in the PEA-um group compared to placebo (P = 0.04), whereas SCORFAD was not different between groups. Mean owner GAS at the final study day was better in the PEA-um than the placebo-treated group (P = 0.05). Conclusion and clinical importance Ultramicronized palmitoylethanolamide could represent an effective and safe option to delay relapse in NFHD cats

    Increased TIMP-3 expression alters the cellular secretome through dual inhibition of the metalloprotease ADAM10 and ligand-binding of the LRP-1 receptor

    Get PDF
    The tissue inhibitor of metalloproteinases-3 (TIMP-3) is a major regulator of extracellular matrix turnover and protein shedding by inhibiting different classes of metalloproteinases, including disintegrin metalloproteinases (ADAMs). Tissue bioavailability of TIMP-3 is regulated by the endocytic receptor low-density-lipoprotein receptor-related protein-1 (LRP-1). TIMP-3 plays protective roles in disease. Thus, different approaches have been developed aiming to increase TIMP-3 bioavailability, yet overall effects of increased TIMP-3 in vivo have not been investigated. Herein, by using unbiased mass-spectrometry we demonstrate that TIMP-3-overexpression in HEK293 cells has a dual effect on shedding of transmembrane proteins and turnover of soluble proteins. Several membrane proteins showing reduced shedding are known as ADAM10 substrates, suggesting that exogenous TIMP-3 preferentially inhibits ADAM10 in HEK293 cells. Additionally identified shed membrane proteins may be novel ADAM10 substrate candidates. TIMP-3-overexpression also increased extracellular levels of several soluble proteins, including TIMP-1, MIF and SPARC. Levels of these proteins similarly increased upon LRP-1 inactivation, suggesting that TIMP-3 increases soluble protein levels by competing for their binding to LRP-1 and their subsequent internalization. In conclusion, our study reveals that increased levels of TIMP-3 induce substantial modifications in the cellular secretome and that TIMP-3-based therapies may potentially provoke undesired, dysregulated functions of ADAM10 and LRP-1

    Development of a Three Dimensional Multiscale Computational Model of the Human Epidermis

    Get PDF
    Transforming Growth Factor (TGF-β1) is a member of the TGF-beta superfamily ligand-receptor network. and plays a crucial role in tissue regeneration. The extensive in vitro and in vivo experimental literature describing its actions nevertheless describe an apparent paradox in that during re-epithelialisation it acts as proliferation inhibitor for keratinocytes. The majority of biological models focus on certain aspects of TGF-β1 behaviour and no one model provides a comprehensive story of this regulatory factor's action. Accordingly our aim was to develop a computational model to act as a complementary approach to improve our understanding of TGF-β1. In our previous study, an agent-based model of keratinocyte colony formation in 2D culture was developed. In this study this model was extensively developed into a three dimensional multiscale model of the human epidermis which is comprised of three interacting and integrated layers: (1) an agent-based model which captures the biological rules governing the cells in the human epidermis at the cellular level and includes the rules for injury induced emergent behaviours, (2) a COmplex PAthway SImulator (COPASI) model which simulates the expression and signalling of TGF-β1 at the sub-cellular level and (3) a mechanical layer embodied by a numerical physical solver responsible for resolving the forces exerted between cells at the multi-cellular level. The integrated model was initially validated by using it to grow a piece of virtual epidermis in 3D and comparing the in virtuo simulations of keratinocyte behaviour and of TGF-β1 signalling with the extensive research literature describing this key regulatory protein. This research reinforces the idea that computational modelling can be an effective additional tool to aid our understanding of complex systems. In the accompanying paper the model is used to explore hypotheses of the functions of TGF-β1 at the cellular and subcellular level on different keratinocyte populations during epidermal wound healing
    • …
    corecore