37 research outputs found

    Xeroderma pigmentosum: clues to understanding cancer initiation

    Get PDF
    AbstractXeroderma pigmentosum (XP) type C is a rare autosomal recessive disorder that occurs because of inactivation of the xeroderma pigmentosum group C (XPC) protein, which is an important DNA damage recognition protein involved in DNA nucleotide excision repair (NER). This defect, which prevents removal of a wide array of direct and indirect DNA lesions, is associated with a decrease in catalase activity. As a novel photoprotective approach, lentivirus-mediated catalase overexpression in XPC human keratinocytes results in a marked decrease in sunburn cell formation, caspase-3 activation, and p53 accumulation following UVB irradiation. While not correcting the gene defect, indirect gene therapy using antioxidant enzymes may be helpful in limiting photosensitivity in XP type C, as well as in other monogenic/polygenic photosensitive disorders characterized by reactive oxygen species (ROS) accumulation. Hypoxia-inducible factor-1 (HIF-1), a major transcription factor sensitive to oxygen levels, responds to various stress factors. As a common stressor of skin, UVB induces a biphasic HIF-1a variation through ROS generation in keratinocytes. HIF-1a has an important regulator effect on the expression of XPC protein and other NER genes, indicating indirect regulation of NER by ROS. The intrinsic genomic instability arising in XP type C provides a good opportunity to investigate the complex molecular mechanisms underlying the Warburg effect (the shift of mito-chondrial metabolism towards glycolysis). Overall, the monogenic disorder XP type C is a powerful tool for studying photoprotection and cancer

    Syndrome de Down (trisomie 21), un paradigme des hémopathies malignes de l’enfant

    No full text
    National audienc

    Rôle des facteurs de transcription HIF (Hypoxia Inducible Factor) dans le maintien à long terme des cellules souches hématopoïétiques humaines chez la souris immunodéficiente

    No full text
    Le taux physiologique d oxygène est finement régulé dans les tissus des mammifères, l oxygénation diffère d un tissu à l autre, ainsi qu au sein même de ces derniers, ce phénomène est en grande partie dû à l architecture vasculaire. L oxygène est un stimulus clef dans la destinée des cellules durant l embryogenèse et la progression tumorale. Il est actuellement reconnu que les cellules souches se distribuent en suivant un gradient d oxygène, où les faibles concentrations en oxygène (Hypoxie) favorisent la conservation d un état indifférencié. Les cellules souches hématopoïétiques (CSH) résident dans des niches osseuses où la disponibilité en oxygène est limitée voir nulle. Le modèle de l hématopoïèse a été largement décrit au niveau cellulaire et moléculaire et est un des principaux modèles utilisé dans l étude des mécanismes gouvernant le caractère souche d une cellule. Des études récentes révèlent dans des modèles murins que les facteurs de transcriptions induits par l hypoxie (HIF) affectent le comportement des cellules souches hématopoïétiques. Ici, nous étudions le rôle potentiel des facteurs HIF-1a et HIF-2a dans les CSH Humaines. Le knockdown des deux facteurs a été obtenu en combinant une stratégie de short-hairpin RNA et de vecteurs de transferts lentiviraux. La transduction de cellules de sang de cordon CD34-positive révèle que les deux knockdowns affectent à court terme la croissance des progéniteurs et CSH et à long terme leurs capacités de reconstitution dans des souris immuno-déficientes NOD/LtSz-scid IL2rgnull. Cependant, nous observons un effet plus délétère de HIF-2a sur le maintien des cellules souches en comparaison à HIF-1a.Physiological oxygen level is tightly regulated in mammalian tissues. Moreover, oxygenation differs from one tissue to the other, as well as within a single tissue, due to vasculature modeling. Oxygen levels have been shown to be a key stimulus of cell fate during embryogenesis and cancer progression. It is now widely admitted that stem cells fate followes oxygen gradients with low levels (hypoxia) promoting an undifferentiated state. Hematopoietic stem cells (HSC) reside in bone marrow niches in which oxygen availability is low, even absent. Hypoxia-inducible factors (HIF) are the main factors regulating the cell-response to oxygen variation. Studies on mouse models reveal that HIFs affect HSC activity. Here, we investigate the potential function of HIF-1a and HIF-2a within human HSCs. Knockdown of both factors was obtained by lentivirus-mediated short-hairpin RNA strategy. Transductions of CD34-positive cord blood cells reveal that HIF-2a knockdown affects myelo-erythroid differentiation. Both HIF-a are required for long-term reconstitution in immune-deficient NOD/LtSz-scid IL2rgnull mice, whereas a more pronounced deficiency was observed for HIF-2a. Overall, our data strongly suggest the existence of multiple but preponderant functions in human stem cell maintenance and differentiation.BORDEAUX2-Bib. électronique (335229905) / SudocSudocFranceF

    Molecular dynamics of myeloid progenitor transformation

    No full text
    International audienceAcute myeloid leukaemia (AML) is the most common acute leukaemia in adults. AML results from the accumulation of abnormal immature myeloid progenitors, also called blasts, that are blocked in their differentiation. AML is a very heterogeneous disease with more than a dozen of genetically distinct entities (See new AML classification from [1]). Each genetically distinct AML subgroup is generally defined by gene mutations and/or alterations related to its aggressiveness, and is associated to [...

    Targeting Reactive Oxygen Species Metabolism to Induce Myeloma Cell Death

    No full text
    International audienceMultiple myeloma (MM) is a common hematological disease characterized by the accumulation of clonal malignant plasma cells in the bone marrow. Over the past two decades, new therapeutic strategies have significantly improved the treatment outcome and patients survival. Nevertheless, most MM patients relapse underlying the need of new therapeutic approaches. Plasma cells are prone to produce large amounts of immunoglobulins causing the production of intracellular ROS. Although adapted to high level of ROS, MM cells die when exposed to drugs increasing ROS production either directly or by inhibiting antioxidant enzymes. In this review, we discuss the efficacy of ROS-generating drugs for inducing MM cell death and counteracting acquired drug resistance specifically toward proteasome inhibitors

    XPC multifaceted roles beyond DNA damage repair: p53-dependent and p53-independent functions of XPC in cell fate decisions

    No full text
    Xeroderma pigmentosum group C protein (XPC) acts as a DNA damage recognition factor for bulky adducts and as an initiator of global genome nucleotide excision repair (GG-NER). Novel insights have shown that the role of XPC is not limited to NER, but is also implicated in DNA damage response (DDR), as well as in cell fate decisions upon stress. Moreover, XPC has a proteolytic role through its interaction with p53 and casp-2S. XPC is also able to determine cellular outcomes through its interaction with downstream proteins, such as p21, ARF, and p16. XPC interactions with effector proteins may drive cells to various fates such as apoptosis, senescence, or tumorigenesis. In this review, we explore XPC’s involvement in different molecular pathways in the cell and suggest that XPC can be considered not only as a genomic caretaker and gatekeeper but also as a tumor suppressor and cellular-fate decision maker. These findings envisage that resistance to cell death, induced by DNA-damaging therapeutics, in highly prevalent P53-deficent tumors might be overcome through new therapeutic approaches that aim to activate XPC in these tumors. Moreover, this review encourages care providers to consider XPC status in cancer patients before chemotherapy in order to improve the chances of successful treatment and enhance patients’ survival

    Succès de la thérapie génique d’un modèle murin de porphyrie érythropoïétique congénitale

    No full text
    Les porphyries héréditaires représentent un ensemble de maladies métaboliques caractérisées par une synthèse, une accumulation et une excrétion accrues de porphyrines et/ou de leurs précurseurs, l’acide delta aminolévulinique et le porphobilinogène. Chacune de ces maladies a pu être reliée à un déficit spécifique d’une des enzymes de la biosynthèse de l’hème, et nous avons précédemment publié dans Médecine/Sciences les progrès effectués dans la connaissance des gènes, la pathologie moléculaire des porphyries ainsi que des modèles animaux indispensables pour des études physiopathologiques et thérapeutiques. Parmi les porphyries érythropoïétiques, la porphyrie érythropoïétique congénitale (PEC), ou maladie de Günther, la plus sévère des porphyries, est une maladie génétique caractérisée par un déficit en uroporphyrinogène III synthase (UROS). Elle est actuellement traitée par greffe de moelle osseuse allogénique dans les formes graves ; elle pourrait bénéficier dans le futur d’une thérapie génique ciblée sur les cellules souches/progénitrices hématopoïétiques. Les résultats d’une thérapie génique efficace dans un nouveau modèle murin de cette porphyrie sont exposés dans cet article
    corecore