2,847 research outputs found

    A Longitudinal Study of Factors that Affect User Interactions with Social Media and Email Spam

    Get PDF
    Given the rapid growth of social media and the increasing prevalence of spam, it is crucial to understand users’ interactions with unsolicited content to develop effective countermeasures against spam. This thesis focuses on exploring the factors that influence users’ decisions to interact with spam on social media and email. It builds upon prior work, which serves as a foundation for further research and conducting a longitudinal analysis. Our results are based on the analysis of 221 responses collected through an online survey. The survey not only gathered demographic information such as age, gender, and race but also collected data on education, spam training, interaction with spam, and experiences of being a victim of spam. With about 87% of respondents stating they sometimes, often, or always encounter spam on social media, only 23% interact with it sometimes, often, or always before knowing it was spam, and 10% sometimes, often, or always interact with social media spam after knowing it was spam. Of the 75% of the respondents who stated that they sometimes, often, or always encounter email spam, approximately 13% of the respondents stated that they sometimes, often, or always interact with email spam before knowing it is spam, and 6%s stated that they sometimes, often, or always interact with email spam after knowing it is spam. Although only 38% of the users stated that they may have been victims of social media spam and 21% stated that they may have been victims of email spam. Among the factors analyzed, only age had an effect on reporting email spam, but not social media spam. A STEM education was found to reduce the likelihood of being a victim of both social media and email spam, as well as reduce the likelihood of interacting with both email and social media spam, but only before users knew they were interacting with spam. Interestingly, formal spam training did not show any statistical significance in determining how users interact with, report, or become victims of social media spam, although there was an effect when observing the identification of email spam. To quantify the effect of different factors on individuals falling victim to spam on social media and email, a logistic regression analysis was performed. The research findings suggest that individuals with a higher attained degree and a STEM background are the least likely to be victims of spam

    Robustness and Adaptiveness Analysis of Future Fleets

    Full text link
    Making decisions about the structure of a future military fleet is a challenging task. Several issues need to be considered such as the existence of multiple competing objectives and the complexity of the operating environment. A particular challenge is posed by the various types of uncertainty that the future might hold. It is uncertain what future events might be encountered; how fleet design decisions will influence and shape the future; and how present and future decision makers will act based on available information, their personal biases regarding the importance of different objectives, and their economic preferences. In order to assist strategic decision-making, an analysis of future fleet options needs to account for conditions in which these different classes of uncertainty are exposed. It is important to understand what assumptions a particular fleet is robust to, what the fleet can readily adapt to, and what conditions present clear risks to the fleet. We call this the analysis of a fleet's strategic positioning. This paper introduces how strategic positioning can be evaluated using computer simulations. Our main aim is to introduce a framework for capturing information that can be useful to a decision maker and for defining the concepts of robustness and adaptiveness in the context of future fleet design. We demonstrate our conceptual framework using simulation studies of an air transportation fleet. We capture uncertainty by employing an explorative scenario-based approach. Each scenario represents a sampling of different future conditions, different model assumptions, and different economic preferences. Proposed changes to a fleet are then analysed based on their influence on the fleet's robustness, adaptiveness, and risk to different scenarios

    Characterization of granite matrix porosity and pore-space geometry by in situ and laboratory methods

    Get PDF
    Most available studies of interconnected matrix porosity of crystalline rocks are based on laboratory investigations; that is, work on samples that have undergone stress relaxation and were affected by drilling and sample preparation. The extrapolation of the results to in situ conditions is therefore associated with considerable uncertainty, and this was the motivation to conduct the ‘in situ Connected Porosity' experiment at the Grimsel Test Site (Central Swiss Alps). An acrylic resin doped with fluorescent agents was used to impregnate the microporous granitic matrix in situ around an injection borehole, and samples were obtained by overcoring. The 3-D structure of the pore-space, represented by microcracks, was studied by U-stage fluorescence microscopy. Petrophysical methods, including the determination of porosity, permeability and P-wave velocity, were also applied. Investigations were conducted both on samples that were impregnated in situ and on non-impregnated samples, so that natural features could be distinguished from artefacts. The investigated deformed granites display complex microcrack populations representing a polyphase deformation at varying conditions. The crack population is dominated by open cleavage cracks in mica and grain boundary cracks. The porosity of non-impregnated samples lies slightly above 1 per cent, which is 2-2.5 times higher than the in situ porosity obtained for impregnated samples. Measurements of seismic velocities (Vp) on spherical rock samples as a function of confining pressure, spatial direction and water saturation for both non-impregnated and impregnated samples provide further constraints on the distinction between natural and induced crack types. The main conclusions are that (1) an interconnected network of microcracks exists in the whole granitic matrix, irrespective of the distance to ductile and brittle shear zones, and (2) conventional laboratory methods overestimate the matrix porosity. Calculations of contaminant transport through fractured media often rely on matrix diffusion as a retardation mechanis

    Robustness and Adaptability Analysis of Future Military Air Transportation Fleets

    Get PDF
    Making decisions about the structure of a future military fleet is challenging. Several issues need to be considered, including multiple competing objectives and the complexity of the operating environment. A particular challenge is posed by the various types of uncertainty that the future holds. It is uncertain what future events might be encountered and how fleet design decisions will influence these events. In order to assist strategic decision-making, an analysis of future fleet options needs to account for conditions in which these different uncertainties are exposed. It is important to understand what assumptions a particular fleet is robust to, what the fleet can readily adapt to, and what conditions present risks to the fleet. We call this the analysis of a fleet’s strategic positioning. Our main aim is to introduce a framework that captures information useful to a decision maker and defines the concepts of robustness and adaptability in the context of future fleet design. We demonstrate our conceptual framework by simulating an air transportation fleet problem. We account for uncertainty by employing an explorative scenario-based approach. Each scenario represents a sampling of different future conditions and different model assumptions. Proposed changes to a fleet are then analysed based on their influence on the fleet’s robustness, adaptability, and risk to different scenarios

    Impact of strengthening fluids on roughness of 3D printed models

    Get PDF
    For some applications, 3D printed parts usually do not have satisfactory mechanical properties, so to broaden their usage, additive technologies should be combined with the well-known metallurgical processes, such as investment and others casting techniques. 3D printing developers persistently introduce new base materials and strengthening fluids which may cause different surface roughness. Therefore, in this paper, the authors have tested the roughness of 3D printed samples strengthened with common, but also with alternative fluids. Measurements proved that fluids do have significant influence on the roughness

    Validation of differential pulse polarographic method of ascorbic acid assay in food – Comparison with the chromatographic reference method

    Get PDF
    The objective of the study was to demonstrate the applicability of differential pulse polarography (DPP) technique of the ascorbic acid (AA) assay for the analysis of food samples with various matrices. The following validation parameters were determined: selectivity, linearity, precision, accuracy, limit of detection, and limit of quantification. The limits of detection and quantification were 0.17 and 0.5 mg ascorbic acid per 100 g food, respectively. The average recovery of added ascorbic acid from all matrices was 96.3–103.6%. The values of the coefficient of variation calculated on the basis of AA contents for food matrices were in the range 2–9.26% and Horrat values were 0.37–1.10. Ascorbic acid values of the samples obtained from the polarographic method were compared with those obtained from high-performance liquid chromatography with diode-array detection (HPLC-DAD) used as the reference method. The analytical parameters determined showed that the polarographic method was equivalent to the chromatographic method. Validation of the polarographic method of ascorbic acid assay indicates that it can be applied for the analysis of ascorbic acid concentration in food products that do not contain isoascorbic acid. This means that the method can be recommended for routine determinations

    Long-distance quantum communication over noisy networks without long-time quantum memory

    Full text link
    The problem of sharing entanglement over large distances is crucial for implementations of quantum cryptography. A possible scheme for long-distance entanglement sharing and quantum communication exploits networks whose nodes share Einstein-Podolsky-Rosen (EPR) pairs. In Perseguers et al. [Phys. Rev. A 78, 062324 (2008)] the authors put forward an important isomorphism between storing quantum information in a dimension DD and transmission of quantum information in a D+1D+1-dimensional network. We show that it is possible to obtain long-distance entanglement in a noisy two-dimensional (2D) network, even when taking into account that encoding and decoding of a state is exposed to an error. For 3D networks we propose a simple encoding and decoding scheme based solely on syndrome measurements on 2D Kitaev topological quantum memory. Our procedure constitutes an alternative scheme of state injection that can be used for universal quantum computation on 2D Kitaev code. It is shown that the encoding scheme is equivalent to teleporting the state, from a specific node into a whole two-dimensional network, through some virtual EPR pair existing within the rest of network qubits. We present an analytic lower bound on fidelity of the encoding and decoding procedure, using as our main tool a modified metric on space-time lattice, deviating from a taxicab metric at the first and the last time slices.Comment: 15 pages, 10 figures; title modified; appendix included in main text; section IV extended; minor mistakes remove

    Sequential fissions of heavy nuclear systems

    Get PDF
    In Xe+Sn central collisions from 12 to 20 MeV/A measured with the INDRA 4π\pi multidetector, the three-fragment exit channel occurs with a significant cross section. In this contribution, we show that these fragments arise from two successive binary splittings of a heavy composite system. Strong Coulomb proximity effects are observed in the three-fragment final state. By comparison with Coulomb trajectory calculations, we show that the time scale between the consecutive break-ups decreases with increasing bombarding energy, becoming compatible with quasi-simultaneous multifragmentation above 18 MeV/A.Comment: 6 pages, 5 figures, contribution to conference proceedings of the Fifth International Workshop on Nuclear fission and Fission-Product Spectroscop
    corecore