80 research outputs found

    The Free-Free Opacity in Warm, Dense, and Weakly Ionized Helium

    Full text link
    We investigate the ionization and the opacity of warm, dense helium under conditions found in the atmospheres of cool white dwarf stars. Our particular interest is in densities up to 3g/cm3\rm 3 g/cm^{3} and temperatures from 1000K to 10000K. For these physical conditions various approaches for modeling the ionization equilibrium predict ionization fractions that differ by orders of magnitudes. Furthermore, estimates of the density at which helium pressure-ionizes vary from 0.3\rm 0.3 to 14g/cm3\rm 14 g/cm^{3}. In this context, the value of the electron-atom inverse bremsstrahlung absorption is highly uncertain. We present new results obtained from a non-ideal chemical model for the ionization equilibrium, from Quantum Molecular Dynamics (QMD) simulations, and from the analysis of experimental data to better understand the ionization fraction in fluid helium in the weak ionization limit.Comment: 4 pages, 3 figures, 1 table. Accepted for publication in the Proceedings of the 14th APS Topical Conference on Shock Compression of Condensed Matter, Baltimore, M

    Star clusters dynamics in a laboratory: electrons in an ultracold plasma

    Full text link
    Electrons in a spherical ultracold quasineutral plasma at temperature in the Kelvin range can be created by laser excitation of an ultra-cold laser cooled atomic cloud. The dynamical behavior of the electrons is similar to the one described by conventional models of stars clusters dynamics. The single mass component, the spherical symmetry and no stars evolution are here accurate assumptions. The analog of binary stars formations in the cluster case is three-body recombination in Rydberg atoms in the plasma case with the same Heggie's law: soft binaries get softer and hard binaries get harder. We demonstrate that the evolution of such an ultracold plasma is dominated by Fokker-Planck kinetics equations formally identical to the ones controlling the evolution of a stars cluster. The Virial theorem leads to a link between the plasma temperature and the ions and electrons numbers. The Fokker-Planck equation is approximate using gaseous and fluid models. We found that the electrons are in a Kramers-Michie-King's type quasi-equilibrium distribution as stars in clusters. Knowing the electron distribution and using forced fast electron extraction we are able to determine the plasma temperature knowing the trapping potential depth.Comment: Submitted to MNRA

    Plasma formation from ultracold Rydberg gases

    Full text link
    Recent experiments have demonstrated the spontaneous evolution of a gas of ultracold Rydberg atoms into an expanding ultracold plasma, as well as the reverse process of plasma recombination into highly excited atomic states. Treating the evolution of the plasma on the basis of kinetic equations, while ionization/excitation and recombination are incorporated using rate equations, we have investigated theoretically the Rydberg-to-plasma transition. Including the influence of spatial correlations on the plasma dynamics in an approximate way we find that ionic correlations change the results only quantitatively but not qualitatively

    Evolution of Ultracold, Neutral Plasmas

    Get PDF
    We present the first large-scale simulations of an ultracold, neutral plasma, produced by photoionization of laser-cooled xenon atoms, from creation to initial expansion, using classical molecular dynamics methods with open boundary conditions. We reproduce many of the experimental findings such as the trapping efficiency of electrons with increased ion number, a minimum electron temperature achieved on approach to the photoionization threshold, and recombination into Rydberg states of anomalously-low principal quantum number. In addition, many of these effects establish themselves very early in the plasma evolution (\sim ns) before present experimental observations begin.Comment: 4 pages, 3 figures, submitted to PR

    Electrical conductivity of plasmas of DB white dwarf atmospheres

    Full text link
    The static electrical conductivity of non-ideal, dense, partially ionized helium plasma was calculated over a wide range of plasma parameters: temperatures 1104KT1105K1\cdot 10^{4}\textrm{K} \lesssim T \lesssim 1\cdot 10^{5}\textrm{K} and mass density 1×106g/cm3ρ2g/cm31 \times 10^{-6} \textrm{g}/\textrm{cm}^{3} \lesssim \rho \lesssim 2 \textrm{g}/\textrm{cm}^{3}. Calculations of electrical conductivity of plasma for the considered range of plasma parameters are of interest for DB white dwarf atmospheres with effective temperatures 1104KTeff3104K1\cdot 10^{4}\textrm{K} \lesssim T_{eff} \lesssim 3\cdot 10^{4}\textrm{K}. Electrical conductivity of plasma was calculated by using the modified random phase approximation and semiclassical method, adapted for the case of dense, partially ionized plasma. The results were compared with the unique existing experimental data, including the results related to the region of dense plasmas. In spite of low accuracy of the experimental data, the existing agreement with them indicates that results obtained in this paper are correct

    Calculation of a Deuterium Double Shock Hugoniot from Ab initio Simulations

    Full text link
    We calculate the equation of state of dense deuterium with two ab initio simulations techniques, path integral Monte Carlo and density functional theory molecular dynamics, in the density range of 0.67 < rho < 1.60 g/cc. We derive the double shock Hugoniot and compare with the recent laser-driven double shock wave experiments by Mostovych et al. [1]. We find excellent agreement between the two types of microscopic simulations but a significant discrepancy with the laser-driven shock measurements.Comment: accept for publication in Phys. Rev. Lett., Nov. 2001, 4 pages, 4 figure

    CariesCare practice guide : consensus on evidence into practice

    Get PDF
    This CariesCare practice guide is derived from the International Caries Classification and Management System (ICCMS) and provides a structured update for dentists to help them deliver optimal caries care and outcomes for their patients. This '4D cycle' is a practice-building format, which both prevents and controls caries and can engage patients as long-term health partners with their practice. CariesCare International (CCI™) promotes a patient-centred, risk-based approach to caries management designed for dental practice. This comprises a health outcomes-focused system that aims to maintain oral health and preserve tooth structure in the long-term. It guides the dental team through a four-step process (4D system), leading to personalised interventions: 1st D: Determine Caries Risk; 2nd D: Detect lesions, stage their severity and assess their activity status; 3rd D: Decide on the most appropriate care plan for the specific patient at that time; and then, finally, 4th D: Do the preventive and tooth-preserving care which is needed (including risk-appropriate preventive care; control of initial non-cavitated lesions; and conservative restorative treatment of deep dentinal and cavitated caries lesions). CariesCare International has designed this practice-friendly consensus guide to summarise best practice as informed by the best available evidence. Following the guide should also increase patient satisfaction, involvement, wellbeing and value, by being less invasive and more health-focused. For the dentist it should also provide benefits at the professional and practice levels including improved medico-legal protection
    corecore