451 research outputs found

    Direct observation of Fe spin reorientation in single crystalline YbFe6Ge6

    Full text link
    We have grown single crystals of YbFe6Ge6 and LuFe6Ge6 and characterized their anisotropic behaviour through low field magnetic susceptibility, field-dependent magnetization, resistivity and heat capacity measurements. The Yb+3 valency is confirmed by LIII XANES measurements. YbFe6Ge6 crystals exhibit a field-dependent, sudden reorientation of the Fe spins at about 63 K, a unique effect in the RFe6Ge6 family (R = rare earths) where the Fe ions order anti-ferromagnetically with Neel temperatures above 450 K and the R ions' magnetism appears to behave independently. The possible origins of this unusual behaviour of the ordered Fe moments in this compound are discussed.Comment: 12 pages, 8 figures, accepted in J. Phys.: Cond. Matte

    Aquatic polymers can drive pathogen transmission in coastal ecosystems.

    Get PDF
    Gelatinous polymers including extracellular polymeric substances (EPSs) are fundamental to biophysical processes in aquatic habitats, including mediating aggregation processes and functioning as the matrix of biofilms. Yet insight into the impact of these sticky molecules on the environmental transmission of pathogens in the ocean is limited. We used the zoonotic parasite Toxoplasma gondii as a model to evaluate polymer-mediated mechanisms that promote transmission of terrestrially derived pathogens to marine fauna and humans. We show that transparent exopolymer particles, a particulate form of EPS, enhance T. gondii association with marine aggregates, material consumed by organisms otherwise unable to access micrometre-sized particles. Adhesion to EPS biofilms on macroalgae also captures T. gondii from the water, enabling uptake of pathogens by invertebrates that feed on kelp surfaces. We demonstrate the acquisition, concentration and retention of T. gondii by kelp-grazing snails, which can transmit T. gondii to threatened California sea otters. Results highlight novel mechanisms whereby aquatic polymers facilitate incorporation of pathogens into food webs via association with particle aggregates and biofilms. Identifying the critical role of invisible polymers in transmission of pathogens in the ocean represents a fundamental advance in understanding and mitigating the health impacts of coastal habitat pollution with contaminated runoff

    Seasonal movements and habitat use of African buffalo in Ruaha National Park, Tanzania.

    Get PDF
    BACKGROUND:Assessing wildlife movements and habitat use is important for species conservation and management and can be informative for understanding population dynamics. The African buffalo (Syncerus caffer) population of Ruaha National Park, Tanzania has been declining, and little was known about the movement, habitat selection, and space use of the population, which is important for understanding possible reasons behind the decline. A total of 12 African buffalo cows from four different herds were collared with satellite transmitters. Movements were assessed over 2 years from 11 animals. RESULTS:The space use of the individual collared buffaloes as an approximation of the 95% home range size estimated using Brownian bridge models, ranged from 73 to 601 km2. The estimated home ranges were larger in the wet season than in the dry season. With the exception of one buffalo all collared animals completed a wet season migration of varying distances. A consistent pattern of seasonal movement was observed with one herd, whereas the other herds did not behave the same way in the two wet seasons that they were tracked. Herd splitting and herd switching occurred on multiple occasions. Buffaloes strongly associated with habitats near the Great Ruaha River in the dry season and had little association to permanent water sources in the wet season. Daily movements averaged 4.6 km (standard deviation, SD = 2.6 km), with the longest distances traveled during November (mean 6.9 km, SD = 3.6 km) at the end of the dry season and beginning of the wet season. The shortest daily distances traveled occurred in the wet season in April-June (mean 3.6 km, SD = 1.6-1.8 km). CONCLUSION:The Great Ruaha River has experienced significant drying in the last decades due to water diversions upstream, which likely has reduced the suitable range for buffaloes. The loss of dry season habitat due to water scarcity has likely contributed to the population decline of the Ruaha buffaloes

    A review of molecular beam epitaxy of ferroelectric BaTiO3 films on Si, Ge and GaAs substrates and their applications

    Get PDF
    SrTiO3 epitaxial growth by molecular beam epitaxy (MBE) on silicon has opened up the route to the monolithic integration of various complex oxides on the complementary metal-oxide-semiconductor silicon platform. Among functional oxides, ferroelectric perovskite oxides offer promising perspectives to improve or add functionalities on-chip. We review the growth by MBE of the ferroelectric compound BaTiO3 on silicon (Si), germanium (Ge) and gallium arsenide (GaAs) and we discuss the film properties in terms of crystalline structure, microstructure and ferroelectricity. Finally, we review the last developments in two areas of interest for the applications of BaTiO3 films on silicon, namely integrated photonics, which benefits from the large Pockels effect of BaTiO3, and low power logic devices, which may benefit from the negative capacitance of the ferroelectric. © 2015 National Institute for Materials Science161711sciescopu

    Analyse non-linéaire des instabilités mécaniques induites par le frottement dans les systÚmes de freinage aéronautique: effets de l'amortissement sur le comportement transitoire et les cycles limites

    Get PDF
    Cet article porte sur l'analyse non-linéaire des instabilités mécaniques induites par le frottement dans les systÚmes de freinage aéronautique. L'étude est réalisée sur un modÚle non-linéaire complet du frein capable de reproduire les principaux phénomÚnes vibratoires observés au cours d'essais expérimentaux. Le contact non-linéaire frottant entre disques stators et rotors du frein responsable de l'apparition de vibrations est considéré. L'étude a pour but de déterminer l'effet de l'amortissement sur le comportement transitoire et les niveaux vibratoires du frein, dans le cas d'une vibration générée par le couplage de deux modes propres du frein. En particulier on s'attachera à déterminer s'il existe une répartition optimale en amortissement qui permette de réduire les niveaux vibratoires engendrés lors de l'apparition de l'instabilité. Une meilleure compréhension des effets de l'amortissement sur le comportement transitoire et les niveaux vibratoires stationnaires du frein pour des points d'équilibre instable permettra de définir des précautions à prendre lors de la conception du systÚme de freinage afin d'en limiter les risques vibratoires

    Development of Superconducting Tuning Quadrupole Corrector (MQT) Prototypes for the LHC

    Get PDF
    The main quadrupoles of the Large Hadron Collider (LHC) are connected in families of focusing and defocusing magnets. In order to make tuning corrections in the machine a number of quadrupole corrector magnets (designated MQT) are necessary. These 56 mm diameter aperture magnets have to be compact, with a maximum length of 395 mm and a coil radial thickness of 5 to 7.5 mm, while generating a minimum field gradient of 110 T/m. Two design options have been explored, both using the "counter-winding" system developed at CERN for the fabrication of low cost corrector coils. The first design, with the poles composed of two double-pancake coils, each counter-wound using a single wire, superposed to create 4-layer coils, was developed and built by ACCEL Instruments GmbH. A second design where single coils were counter-wound using a 3-wire ribbon to obtain 6-layer coils was developed at CERN. This paper describes the two designs and reports on the performance of the prototypes during testing

    Identification of the First Oomycete Mating-type Locus Sequence in the Grapevine Downy Mildew Pathogen, Plasmopara viticola

    Get PDF
    Mating types are self-incompatibility systems that promote outcrossing in plants, fungi, and oomycetes. Mating-type genes have been widely studied in plants and fungi but have yet to be identified in oomycetes, eukaryotic organisms closely related to brown algae that cause many destructive animal and plant diseases. We identified the mating-type locus of Plasmopara viticola, the oomycete responsible for grapevine downy mildew, one of the most damaging grapevine diseases worldwide. Using a genome-wide association approach, we identified a 570-kb repeat-rich non-recombining region controlling mating types, with two highly divergent alleles. We showed that one mating type was homozygous, whereas the other was heterozygous at this locus. The mating-type locus encompassed 40 genes, including one encoding a putative hormone receptor. Functional studies will, however, be required to validate the function of these genes and find the actual determinants of mating type. Our findings have fundamental implications for our understanding of the evolution of mating types, as they reveal a unique determinism involving an asymmetry of heterozygosity, as in sex chromosomes and unlike other mating-type systems. This identification of the mating-type locus in such an economically important crop pathogen also has applied implications, as outcrossing facilitates rapid evolution and resistance to harsh environmental conditions
    • 

    corecore