39 research outputs found

    Genome-culture coevolution promotes rapid divergence of killer whale ecotypes.

    Get PDF
    Analysing population genomic data from killer whale ecotypes, which we estimate have globally radiated within less than 250,000 years, we show that genetic structuring including the segregation of potentially functional alleles is associated with socially inherited ecological niche. Reconstruction of ancestral demographic history revealed bottlenecks during founder events, likely promoting ecological divergence and genetic drift resulting in a wide range of genome-wide differentiation between pairs of allopatric and sympatric ecotypes. Functional enrichment analyses provided evidence for regional genomic divergence associated with habitat, dietary preferences and post-zygotic reproductive isolation. Our findings are consistent with expansion of small founder groups into novel niches by an initial plastic behavioural response, perpetuated by social learning imposing an altered natural selection regime. The study constitutes an important step towards an understanding of the complex interaction between demographic history, culture, ecological adaptation and evolution at the genomic level

    Nodal-Dependent Mesendoderm Specification Requires the Combinatorial Activities of FoxH1 and Eomesodermin

    Get PDF
    Vertebrate mesendoderm specification requires the Nodal signaling pathway and its transcriptional effector FoxH1. However, loss of FoxH1 in several species does not reliably cause the full range of loss-of-Nodal phenotypes, indicating that Nodal signals through additional transcription factors during early development. We investigated the FoxH1-dependent and -independent roles of Nodal signaling during mesendoderm patterning using a novel recessive zebrafish FoxH1 mutation called midway, which produces a C-terminally truncated FoxH1 protein lacking the Smad-interaction domain but retaining DNA–binding capability. Using a combination of gel shift assays, Nodal overexpression experiments, and genetic epistasis analyses, we demonstrate that midway more accurately represents a complete loss of FoxH1-dependent Nodal signaling than the existing zebrafish FoxH1 mutant schmalspur. Maternal-zygotic midway mutants lack notochords, in agreement with FoxH1 loss in other organisms, but retain near wild-type expression of markers of endoderm and various nonaxial mesoderm fates, including paraxial and intermediate mesoderm and blood precursors. We found that the activity of the T-box transcription factor Eomesodermin accounts for specification of these tissues in midway embryos. Inhibition of Eomesodermin in midway mutants severely reduces the specification of these tissues and effectively phenocopies the defects seen upon complete loss of Nodal signaling. Our results indicate that the specific combinations of transcription factors available for signal transduction play critical and separable roles in determining Nodal pathway output during mesendoderm patterning. Our findings also offer novel insights into the co-evolution of the Nodal signaling pathway, the notochord specification program, and the chordate branch of the deuterostome family of animals

    The Fox/Forkhead transcription factor family of the hemichordate Saccoglossus kowalevskii

    Get PDF

    Mesodermal gene expression during the embryonic and larval development of the articulate brachiopod Terebratalia transversa

    Get PDF

    Spillover and pandemic properties of zoonotic viruses with high host plasticity

    Get PDF
    Most human infectious diseases, especially recently emerging pathogens, originate from animals, and ongoing disease transmission from animals to people presents a significant global health burden. Recognition of the epidemiologic circumstances involved in zoonotic spillover, amplification, and spread of diseases is essential for prioritizing surveillance and predicting future disease emergence risk. We examine the animal hosts and transmission mechanisms involved in spillover of zoonotic viruses to date, and discover that viruses with high host plasticity (i.e. taxonomically and ecologically diverse host range) were more likely to amplify viral spillover by secondary human-to-human transmission and have broader geographic spread. Viruses transmitted to humans during practices that facilitate mixing of diverse animal species had significantly higher host plasticity. Our findings suggest that animal-to-human spillover of new viruses that are capable of infecting diverse host species signal emerging disease events with higher pandemic potential in that these viruses are more likely to amplify by human-to-human transmission with spread on a global scale

    Differential gene expression induced by exposure of captive mink to fuel oil: A model for the sea otter

    No full text
    Free-ranging sea otters are subject to hydrocarbon exposure from a variety of sources, both natural and anthropogenic. Effects of direct exposure to unrefined crude oil, such as that associated with the Exxon Valdez oil spill, are readily apparent. However, the impact of subtle but pathophysiologically relevant concentrations of crude oil on sea otters is difficult to assess. The present study was directed at developing a model for assessing the impact of low concentrations of fuel oil on sea otters. Quantitative PCR was used to identify differential gene expression in American mink that were exposed to low concentrations of bunker C fuel oil. A total of 23 genes, representing 10 different physiological systems, were analyzed for perturbation. Six genes with immunological relevance were differentially expressed in oil-fed mink. Interleukin-18 (IL-18), IL-10, inducible nitric oxide synthase (iNOS), cyclooxygenase 2 (COX-2), and complement cytolysis inhibitor (CLI) were down-regulated while IL-2 was up-regulated. Expression of two additional genes was affected; heat shock protein 70 (HSP70) was up-regulated and thyroid hormone receptor (THR) was down-regulated. While the significance of each perturbation is not immediately evident, we identified differential expression of genes that would be consistent with the presence of immune system-modifying and endocrine-disrupting compounds in fuel oil. Application of this approach to identify effects of petroleum contamination on sea otters should be possible following expansion of this mink model to identify a greater number of affected genes in peripheral blood leukocytes
    corecore