100 research outputs found

    Report on the evaluation of the RBRargo|2000 OEM sensor from at sea data analysis

    Get PDF
    Report of evaluation of the RBRargo|2000 OEM sensor based on at sea experiments on Baltic Sea and North Atlantic, and other national experiment

    A new ocean dataset describing Boundary Current systems states and their variability

    Get PDF
    A report on the development and implementations of new methods and dataset productions for Boundary Current systems monitorin

    Analysis of the global shipping traffic for the feasibility of a structural recovery program of Argo floats

    Get PDF
    The Argo observation network is made up of approximately 4,000 drifting floats, which provide valuable information about the ocean and its role in the climate system. Each one of these floats work in continuous cycles, until their batteries run out. Due to its importance in operational forecasting and climate research, the Argo community continually assesses the status of the sensors mounted on each of the floats. Recovering floats would offer a great opportunity to gain insight into sensor performance and stability, although the economic and environmental costs of dedicating a ship exclusively to recover Argo floats make it unsustainable. In this work, the potential of world shipping traffic as float retrievers has been evaluated through an analysis of encounters based on the Automatic Identification System (AIS) of ships and the location of Argo floats in the years 2019 and 2020. About 18,500 and 28,500 encounters happened for both years, respectively. The Mediterranean Sea hosted the most encounters, and fishing ships were the most suitable type of ship aimed for potential recoveries. A total of 298 and 373 floats interacted with the world shipping traffic in favorable weather conditions in 2019 and 2020, respectively, a figure equivalent to 25% of the annual replacement rate of the Argo network. The same approach was applied to 677 floats affected by abrupt salinity drift (ASD), an issue that has recently come to the attention of the Argo community. It turned out that 59 and 103 ASD-affected floats interacted with ships of opportunity in both years

    DMQC cookbook for core Argo parameters

    Get PDF
    This cookbook is to document the end-to-end processing chain of Delayed Mode Quality Control (DMQC) of Core Argo parameters. It provides guidelines on existing manuals, and explains best practices through case studies. This document was initiated after the 1st EU DMQC workshop held in Brest in April 2018, under the MOCCA project. Lately, this work has been undertaken under EuroArgo RISE project. The document is organized as follows. The first part gives some general information (e.g.: How to check quality indicators in delayed mode? What are the reference databases? How to correct pressure? How to use the OWC software to correct salinity? What are the common failures? etc.). The second part gives more specific information for the regional analysis (specific difficulties encountered, reference data available in regional seas, configuration parameters usually used, etc...). The regions covered so far are: the sub-polar Atlantic zone, the Nordic Seas, the Mediterranean and Black Seas, and the Southern Ocean. The third part of the cookbook presents detailed examples of delayed-mode processing for float data in these regions

    Fifteen years of ocean observations with the global Argo array

    Get PDF
    More than 90% of the heat energy accumulation in the climate system between 1971 and the present has been in the ocean. Thus, the ocean plays a crucial role in determining the climate of the planet. Observing the oceans is problematic even under the most favourable of conditions. Historically, shipboard ocean sampling has left vast expanses, particularly in the Southern Ocean, unobserved for long periods of time. Within the past 15 years, with the advent of the global Argo array of pro ling oats, it has become possible to sample the upper 2,000 m of the ocean globally and uniformly in space and time. The primary goal of Argo is to create a systematic global network of pro ling oats that can be integrated with other elements of the Global Ocean Observing System. The network provides freely available temperature and salinity data from the upper 2,000 m of the ocean with global coverage. The data are available within 24 hours of collection for use in a broad range of applications that focus on examining climate-relevant variability on seasonal to decadal timescales, multidecadal climate change, improved initialization of coupled ocean–atmosphere climate models and constraining ocean analysis and forecasting systems.En prens

    Argo data 1999-2019: two million temperature-salinity profiles and subsurface velocity observations from a global array of profiling floats.

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Wong, A. P. S., Wijffels, S. E., Riser, S. C., Pouliquen, S., Hosoda, S., Roemmich, D., Gilson, J., Johnson, G. C., Martini, K., Murphy, D. J., Scanderbeg, M., Bhaskar, T. V. S. U., Buck, J. J. H., Merceur, F., Carval, T., Maze, G., Cabanes, C., Andre, X., Poffa, N., Yashayaev, I., Barker, P. M., Guinehut, S., Belbeoch, M., Ignaszewski, M., Baringer, M. O., Schmid, C., Lyman, J. M., McTaggart, K. E., Purkey, S. G., Zilberman, N., Alkire, M. B., Swift, D., Owens, W. B., Jayne, S. R., Hersh, C., Robbins, P., West-Mack, D., Bahr, F., Yoshida, S., Sutton, P. J. H., Cancouet, R., Coatanoan, C., Dobbler, D., Juan, A. G., Gourrion, J., Kolodziejczyk, N., Bernard, V., Bourles, B., Claustre, H., D'Ortenzio, F., Le Reste, S., Le Traon, P., Rannou, J., Saout-Grit, C., Speich, S., Thierry, V., Verbrugge, N., Angel-Benavides, I. M., Klein, B., Notarstefano, G., Poulain, P., Velez-Belchi, P., Suga, T., Ando, K., Iwasaska, N., Kobayashi, T., Masuda, S., Oka, E., Sato, K., Nakamura, T., Sato, K., Takatsuki, Y., Yoshida, T., Cowley, R., Lovell, J. L., Oke, P. R., van Wijk, E. M., Carse, F., Donnelly, M., Gould, W. J., Gowers, K., King, B. A., Loch, S. G., Mowat, M., Turton, J., Rama Rao, E. P., Ravichandran, M., Freeland, H. J., Gaboury, I., Gilbert, D., Greenan, B. J. W., Ouellet, M., Ross, T., Tran, A., Dong, M., Liu, Z., Xu, J., Kang, K., Jo, H., Kim, S., & Park, H. Argo data 1999-2019: two million temperature-salinity profiles and subsurface velocity observations from a global array of profiling floats. Frontiers in Marine Science, 7, (2020): 700, doi:10.3389/fmars.2020.00700.In the past two decades, the Argo Program has collected, processed, and distributed over two million vertical profiles of temperature and salinity from the upper two kilometers of the global ocean. A similar number of subsurface velocity observations near 1,000 dbar have also been collected. This paper recounts the history of the global Argo Program, from its aspiration arising out of the World Ocean Circulation Experiment, to the development and implementation of its instrumentation and telecommunication systems, and the various technical problems encountered. We describe the Argo data system and its quality control procedures, and the gradual changes in the vertical resolution and spatial coverage of Argo data from 1999 to 2019. The accuracies of the float data have been assessed by comparison with high-quality shipboard measurements, and are concluded to be 0.002°C for temperature, 2.4 dbar for pressure, and 0.01 PSS-78 for salinity, after delayed-mode adjustments. Finally, the challenges faced by the vision of an expanding Argo Program beyond 2020 are discussed.AW, SR, and other scientists at the University of Washington (UW) were supported by the US Argo Program through the NOAA Grant NA15OAR4320063 to the Joint Institute for the Study of the Atmosphere and Ocean (JISAO) at the UW. SW and other scientists at the Woods Hole Oceanographic Institution (WHOI) were supported by the US Argo Program through the NOAA Grant NA19OAR4320074 (CINAR/WHOI Argo). The Scripps Institution of Oceanography's role in Argo was supported by the US Argo Program through the NOAA Grant NA15OAR4320071 (CIMEC). Euro-Argo scientists were supported by the Monitoring the Oceans and Climate Change with Argo (MOCCA) project, under the Grant Agreement EASME/EMFF/2015/1.2.1.1/SI2.709624 for the European Commission

    Interactions Basses Frequences Ocean-Atmosphere dans l'Ocean Austral

    Get PDF
    Patterns of interannual variability of the ocean-atmosphere coupled system in the Southern Hemisphere extratropics are studied with a simple dynamical model, in order to determine the basic physical processes of interaction independently of tropical forcing. The model used is an atmospheric quasi-geostrophic model coupled to a “slab” oceanic mixed layer, which includes mean geostrophic advection by the Antarctic Circumpolar Current (ACC). The ocean-atmosphere coupling occurs through surface heat fluxes and Ekman current heat advection. In a fully coupled simulation, the atmospheric part of the model, which includes high frequency transient eddies at midlatitudes, exhibits a strong Southern Annular Mode (SAM) as the first mode of variability at interannual time-scales. The SAM-related wind anomalies induce Ekman currents in the mixed layer which produce sea surface temperature anomalies. These are then advected along by the ACC. A forced mechanism where the ocean role is reduced to advect the SST appears sufficient to reproduce the main features of the variability. Nevertheless, a positive feedback of the ocean was also found. It operates through anomalous Ekman currents heat advection and contributes to the maintenance of the SST anomaly. The stationary atmospheric response to an idealised SST anomaly (SSTa) is next studied in the same simple model of the Southern Hemisphere. Sensitivity of the stationary atmospheric response to the SSTa location is determined. Differentiating the barotropic from the baroclinic responses, it was found that for extratropical SSTa, the baroclinic atmospheric response is independent of the SSTa longitude whereas the barotropic response can take two different patterns. The SSTa induces a warm air anomaly through the thermal wind balance, which gives a baroclinic response that creates a trough 45 degrees eastward. This response is simply due to the advection of the SSTa induced anomalous vortex stretching by quasi-stationary westerlies. Baroclinic transients eddies were found to have a dissipative role. The barotropic response consists of midlatitudes ridge and South Pole trough for SSTa localised from the western Atlantic to the Indian center ocean ; and of South Pole ridge for SSTa localised from the Australo-Antarctic basin to the center of the Pacific ocean.The barotropic responses have a similar eddy component. The difference in the response pattern is selected by the zonally symmetric component, which is similar to opposite phases of the Southern Annular Mode (SAM). These SAM-like responses are driven by the anomalous advection of relative vorticity which in turn depends on the position of the SSTa relatively to the geopotential quasi-stationary wave mean field of the model.Les modes de variabilitĂ©s interannuelles du systĂšme couplĂ© ocĂ©an-atmosphĂšre auxmoyennes latitudes de l'hĂ©misphĂšre sud sont Ă©tudiĂ©s avec un modĂšle de complĂ©xitĂ© intermĂ©diaire. L'objectif est de dĂ©terminer les mĂ©canismes d'interactions ocĂ©an-atmosphĂšre indĂ©pendamment du forçage tropicale. Le modĂšle est un modĂšle atmosphĂ©rique quasi-gĂ©ostrophique Ă  3 niveaux, couplĂ© Ă  une couche de mĂ©lange ocĂ©anique de profondeur constante incluant l'advection gĂ©ostrophique par le courant circumpolaire Antarctique (ACC). Le couplage ocĂ©anatmosphĂšre se fait par les flux de chaleur de surface et les transports d'Ekman forcĂ©s par la tension de vent de surface. Dans une simulation totalement couplĂ©e, l'atmosphĂšre, qui inclue la dynamique des transitoires baroclines, exhibe un mode annulaire (SAM) comme premier mode de variabilitĂ© interannuelle. Les anomalies de vent induites par le SAM crĂ©ent des courants mĂ©ridiens d'Ekman dans la couche de mĂ©lange qui induisent Ă  leur tour des anomalies de tempĂ©rature ocĂ©anique de surface qui sont ensuite avectĂ©es par l'ACC. Un mĂ©canisme purement forcĂ© oĂč le rĂŽle de l'ocĂ©an est rĂ©duit Ă  l'advection des anomalies de SST est suffisant pour reproduire les caractĂ©ristiques principales de la variabilitĂ©. NĂ©anmoins, une rĂ©troaction positive de l'ocĂ©an est mise en Ă©vidence par l'analyse de la rĂ©ponse stationnaire atmosphĂ©rique Ă  une anomalie de SST (SSTa). Celle-ci est dĂ©terminĂ©e pour un ensemble d'expĂ©riences oĂč une SSTa idĂ©alisĂ©e est localisĂ©e en 14 longitudes diffĂ©rentes, uniformĂ©ment rĂ©parties le long d'un cercle de moyenne latitude. En projetant les rĂ©ponses obtenues sur les modes verticaux atmosphĂ©riques, il est mis en Ă©vidence la partition de la rĂ©ponse en une composante barocline identique quelque soit la position de la SSTa et une composante barotrope se projetant sur le mode dominant de variabilitĂ© atmosphĂ©rique du modĂšle. La SSTa induit une anomalie d'air chaud dans la couche basse atmosphĂ©rique qui engendre une rĂ©ponse barocline 45o Ă  l'est. Cette rĂ©ponse est due Ă  l'advection du vortex stretching induit par la SSTa, par les vents d'ouest quasi-stationnaires. La rĂ©ponse barotrope consiste en une haute pression aux moyennes latitudes et une basse pression sur le pĂŽle quand les SSTa sont localisĂ©es de l'ocĂ©an Atlantique ouest au centre de l'ocĂ©an Indien ; et d'une haute pression sur le pĂŽle quand elle est localisĂ©e du bassin Autralo- Antarctique au centre de l'ocĂ©an Pacifique. Les rĂ©ponses barotropes ont une composante tourbillonnaire identique. La diffĂ©rence entre les rĂ©ponses est dĂ©terminĂ©e par la composante zonalement symĂ©trique qui se projette sur le SAM. La rĂ©ponse barotrope est formĂ©e par le terme d'advection de vorticitĂ© relative basse frĂ©quence qui est lui-mĂȘme dĂ©terminĂ© par l'impact sur le pĂŽle des interactions de l'anomalie de vorticitĂ© relative aux moyennes latitudes avec les ondes stationnaires du modĂšle

    Structure et variabilité du gyre subtropical

    No full text
    The subtropical gyre is a large system of ocean currents and water masses stretching across each of the oceans at mid-latitudes. Primarily driven by winds, the upper ocean circulation tends to accumulate water masses in the center of the gyre. This accumulation drives: a specific stratification, a large scale equatorward circulation in the upper ocean and a compensating intense and narrow current flowing poleward along the western boundary of the ocean (eg: the Gulf Stream in the North Atlantic or the Kuroshio in the North Pacific). The gyre circulation is responsible for redistributing heat taken up by the ocean at low-latitudes to the higher latitudes and to the atmosphere, as well as for storing heat and anthropogenic carbon in its water masses at mid-latitudes. The gyre dynamic furthermore leads to a shallow (1000m) ventilation of the ocean on time scale ranging from 1 to 20 years that plays a role in climate by moderating ocean-atmosphere fluxes on these intermediate timescales.Over 14 years, my work has been centered on subtropical gyres with a focus on the North Atlantic gyre and its water masses. I provide a description of my research contributions to key physical oceanographic questions: what is, and what controls, the ocean stratification structure and variability on seasonal to decadal time-scales ? I answer these questions applied to the most important subtropical gyre water mass of the North Atlantic,the "Eighteen Degree water". I show how I used geophysical fluid dynamic principles of the ocean ventilation. A clear emphasis is made on the water-mass transformation process. I will furthermore present new analysis and diagnostic techniques I developed to objectively study the ocean stratification from ocean circulation numerical simulations, ocean state estimates based on data assimilation and direct ocean measurements. Last, I conclude with the main research axes I propose to investigate in the upcoming years: the past and future variability of western boundary currents.Le gyre subtropical est un grand systĂšme de courants ocĂ©aniques et de masses d’eau qui s’étendent sur chacun des ocĂ©ans aux moyennes latitudes. Principalement entraĂźnĂ©e par les vents, la circulation ocĂ©anique proche de la surface a tendance Ă  accumuler des masses d’eau au centre du gyre. Cette accumulation entraĂźne : une stratification spĂ©cifique, une circulation de grande Ă©chelle dirigĂ©e vers l’équateur dans la partie supĂ©rieure de l’ocĂ©an et un courant compensateur trĂšs Ă©troit dirigĂ© vers le pĂŽle, circulant le long du bord ouest de l’ocĂ©an (ex: le Gulf Stream dans l’Atlantique Nord ou le Kuroshio dans le Pacifique Nord). La circulation du gyre est responsable du transfert de la chaleur absorbĂ©e par l’ocĂ©an aux basses latitudes vers les hautes latitudes et l’atmosphĂšre, ainsi que d’un stockage important de chaleur et de carbone anthropique dans les masses d’eau aux moyennes latitudes. La dynamique du gyre entraĂźne Ă©galement une ventilation peu profonde de l’ocĂ©an (1000m) sur des Ă©chelles de temps allant de 1 Ă  20 ans, ce qui joue un rĂŽle dans le climat n modĂ©rant les flux ocĂ©an-atmosphĂšre Ă  ces Ă©chelles de temps intermĂ©diaires.Pendant 14 ans, mes travaux se sont concentrĂ©s sur ces gyres subtropicaux, en particulier celui de l’ocĂ©an Atlantique Nord et ses masses d’eau. Je dĂ©cris mes contributions de recherche aux problĂ©matiques de caractĂ©risation et de comprĂ©hension de la stratification ocĂ©anique dans le gyre: vis Ă  vis de sa structure mĂ©so-grande Ă©chelle et de sa variabilitĂ© saisonniĂšre Ă  dĂ©cennale. Je rĂ©ponds Ă  ces problĂ©matiques appliquĂ©es Ă  la plus importante masse d’eau du gyre subtropical de l’ocĂ©an Atlantique Nord, l’eau dite "Ă  dix-huit degrĂ©s". Pour ce faire, je montre comment j’ai utilisĂ© les principes de dynamique des fluides gĂ©ophysiques liĂ©s Ă  la ventilation de l’ocĂ©an. L’accent est clairement mis sur le processus de transformation de masse d’eau. Je prĂ©sente en outre de nouvelles techniques d’analyse et de diagnostic que j’ai dĂ©veloppĂ©es pour Ă©tudier objectivement lastratification de l’ocĂ©an Ă  partir de simulations numĂ©riques de la circulation ocĂ©anique, d’estimations de l’état de l’ocĂ©an basĂ©es sur l’assimilation de donnĂ©es et de mesures directes de l’ocĂ©an. Enfin, je conclue par les principaux axes de recherche que je me propose d’étudier dans les annĂ©es Ă  venir : la variabilitĂ© passĂ©e et future des courants de bord ouest

    Structure and variability of the subtropical gyre

    No full text
    The subtropical gyre is a large system of ocean cur- rents and water masses stretching across each of the oceans at mid-latitudes. Primarily driven by winds, the upper ocean circu- lation tends to accumulate water masses in the center of the gyre. This accumulation drives: a specific stratification, a large scale equatorward circulation in the upper ocean and a compensating intense and narrow current flowing poleward along the western boundary of the ocean (eg: the Gulf Stream in the North At- lantic or the Kuroshio in the North Pacific). The gyre circulation is responsible for redistributing heat taken up by the ocean at low-latitudes to the higher latitudes and to the atmosphere, as well as for storing heat and anthropogenic carbon in its water masses at mid-latitudes. The gyre dynamic furthermore leads to a shallow (1000m) ventilation of the ocean on time scale ranging from 1 to 20 years that plays a role in climate by moderating ocean-atmosphere fluxes on these intermediate timescales. Over 14 years, my work has been centered on subtropical gyres with a focus on the North Atlantic gyre and its water masses. I provide a description of my research contributions to key physical oceanographic questions: what is, and what controls, the ocean stratification structure and variability on seasonal to decadal time-scales ? I answer these questions applied to the most important subtropical gyre water mass of the North Atlantic, the "Eighteen Degree water". I show how I used geophysical fluid dynamic principles of the ocean ventilation. A clear em- phasis is made on the water-mass transformation process. I will furthermore present new analysis and diagnostic techniques I de- veloped to objectively study the ocean stratification from ocean circulation numerical simulations, ocean state estimates based on data assimilation and direct ocean measurements. Last, I conclude with the main research axes I propose to investigate in the upcoming years: the past and future variability of western boundary currents.Le gyre subtropical est un grand système de courants océaniques et de masses d’eau qui s’étendent sur chacun des océans aux moyennes latitudes. Principalement entraînée par les vents, la circulation océanique proche de la surface a tendance à accumuler des masses d’eau au centre du gyre. Cette accumu- lation entraîne : une stratification spécifique, une circulation de grande échelle dirigée vers l’équateur dans la partie supérieure de l’océan et un courant compensateur très étroit dirigé vers le pôle, circulant le long du bord ouest de l’océan (ex: le Gulf Stream dans l’Atlantique Nord ou le Kuroshio dans le Pacifique Nord). La circulation du gyre est responsable du transfert de la chaleur absorbée par l’océan aux basses latitudes vers les hautes latitudes et l’atmosphère, ainsi que d’un stockage important de chaleur et de carbone anthropique dans les masses d’eau aux moyennes latitudes. La dynamique du gyre entraîne également une ventilation peu profonde de l’océan (1000m) sur des échelles de temps allant de 1 à 20 ans, ce qui joue un rôle dans le climat en modérant les flux océan-atmosphère à ces échelles de temps intermédiaires. Pendant 14 ans, mes travaux se sont concentrés sur ces gyres subtropicaux, en particulier celui de l’océan Atlantique Nord et ses masses d’eau. Je décris mes contributions de recherche aux problématiques de caractérisation et de compréhension de la stratification océanique dans le gyre: vis à vis de sa structure méso-grande échelle et de sa variabilité saisonnière à décennale. Je réponds à ces problématiques appliquées à la plus impor- tante masse d’eau du gyre subtropical de l’océan Atlantique Nord, l’eau dite "à dix-huit degrés". Pour ce faire, je mon- tre comment j’ai utilisé les principes de dynamique des fluides géophysiques liés à la ventilation de l’océan. L’accent est claire- ment mis sur le processus de transformation de masse d’eau. Je présente en outre de nouvelles techniques d’analyse et de diagnostic que j’ai développées pour étudier objectivement la stratification de l’océan à partir de simulations numériques de la circulation océanique, d’estimations de l’état de l’océan basées sur l’assimilation de données et de mesures directes de l’océan. Enfin, je conclue par les principaux axes de recherche que je me propose d’étudier dans les années à venir : la variabilité passée et future des courants de bord ouest
    • 

    corecore