85 research outputs found

    Editorial: Post-translational Modifications in Plant Nuclear Signaling: Novel Insights Into Responses to Environmental Changes

    Get PDF
    Just imagine a Plant Science professor in front of a classroom full of interested and attentive students. Imagine what their answers to this intriguing question would be: “What are, according to you, the functions ensured by the plant cell nucleus?” It would be very surprising if some of them would answer cell signaling in response to biotic and abiotic stresses or developmental processes. Most of them would probably answer according to a classical point of view: DNA replication or gene expression. Hence it is still admitted in recent publications (see for instance Fedorenko et al., 2010) that molecules smaller than 40 kDa can diffuse freely across the nuclear envelope pores. However, Pauly et al. (2000) showed by studying nuclear Ca2+ signaling that elevations in the extranuclear Ca2+ concentration do not induce an automatic increase of nuclear [Ca2+] as it could be expected. Hence Ca2+ does not freely diffuse across the nuclear envelop pores, indicating that its transport is finely regulated. Then it becomes evident that we should now consider the nucleus as a key component of cell signaling processes leading to the regulation of specific sets of genes. The aim of this topic was to point out how nuclear post-translational modifications (PTMs) play fundamental roles in the signaling pathways initiated in response to environmental changes. Two major points were assessed. First, different papers clearly demonstrate that the nucleus is fully equipped to perform the main PTMs: (de)phosphorylation (Bigeard and Hirt; Krysan and Colcombet), (de)acetylation (Luo et al.; FĂŒl et al.; Ramirez-Prado et al.), oxidoreduction (Martins et al.) or SUMOylation/ubiquitination (Mazur et al.; Serrano et al.). Hence the nucleus can easily integrate a complex network of second messengers including changes in Ca2+ concentration, reactive oxygen species or nitric oxide. Martins et al. nicely exemplified how changes in the nuclear redox status regulate fundamental processes such as cell cycle, protein transport or transcription via S-nitrosylation or S-glutationylation. Activation of nuclear PTMs can also be achieved by the translocation of enzymes which are both substrates and effectors of these PTMs. This is the case for mitogen-activated protein kinases (MAPKs) that in some specific contexts, translocate from the cytosol to the nucleus upon their activation by their corresponding MAPK kinases (Bigeard and Hirt). Relocation of proteins in response to or through PTMs can also be considered at the intranuclear level. Hence in response to SUMO conjugation several Arabidopsis transcription factors were shown to be re-localized in certain nuclear foci (Mazur et al.). PTMs can also affect the behavior of nuclear proteins and in fine their activity. Serrano et al. highlight how the ubiquitin-proteasome system contributes to the nuclear proteome plasticity. Focusing on E3-Ub-ligases, they illustrate how these enzymes attenuate the signaling pathway once the stress has ceased and how they control the homeostasis of nuclear proteins (transcription factors, immune receptors). The second major point of this topic concerns the target proteins of these PTMs. Of course histones are a piece of choice. The review by Ramirez-Prado et al. illustrates how removing or adding marks (phosphorylation, acetylation, methylation, or ubiquitination) on specific histone lysine residues associated to defense genes (WRKYs, pathogenesis-related proteins, etc.) mostly under the control of salicylic acid or jasmonic acid/ethylene signaling pathways, will control the outcome of the plant-microorganism interaction. A second interesting aspect in this review is the illustration of how pathogens manipulate the chromatin regulatory network of the host to achieve their infection process through for example the production of toxins inhibiting histone deacetylases (HDACs), leading to plant susceptibility. PTMs on histones are also of major importance in the response to abiotic stresses. Luo et al reviewed how HDACs, by deacetylating specific lysine residues (mainly H3K9, H3K14, and H4K15) of specific genes regulate responses to salt, drought, cold or heat. However, chromatin remodeling and in fine regulation of gene expression is not only linked to histone modifications. FĂŒl et al. as a perspective in this topic remind us that subunits of key chromatin remodelers (such as MED12, MED13, and MED19A) or transcription factors like Yin Yang 1 in the response to abscisic acid are also targeted and regulated by lysine deacetylases. Hence lysine (de)acetylation regulates gene expression by acting on histones, but also on the whole transcriptional machinery. In conclusion this topic clearly illustrates the diversity of nuclear PTMs, the crosstalks between some of them, and finally their major roles in the regulation of gene expression. A first fascinating challenge is now to decipher at the molecular level the ways cells are using to translocate signals from cytoplasm to the nucleus that regulate nuclear PTMs. A second one is to go further in the characterization of their target proteins: as it is now nicely exemplified by the interplay of histone marks in epigenetics, this is the sine qua non condition to fully understand the power of nuclear PTMs

    Activation of plasma membrane voltage-dependent calcium-permeable channels by disruption of microtubules in carrot cells

    Get PDF
    AbstractPlasma membrane-bound voltage-dependent calcium channels may couple the perception of an initial stimulus to a regulated pathway for calcium influx. The activities of these channels have been shown to be very low and highly unstable but may be recruited by large-predepolarizing pulses, according to a process referred to as recruitment. By combining pharmacological and electrophysiological approaches, we demonstrate in the present paper that the cytoskeleton plays an important role in the regulation of the activity and stability of voltage-dependent calcium channels during whole-cell patch-clamp experiments on carrot protoplasts. Whereas drugs affecting the organization of the microfilament network have no measurable effect, the manipulation of the microtubule network elicits important changes. Thus, the addition of colchicine or oryzalin, which are known to disrupt microtubule organization, leads to a 6–10-fold increase in calcium channel activities and half-life. In contrast, stabilization of the microtubules by taxol has no effect on any of these parameters. The data obtained suggest that interactions of microtubules and voltage-dependent calcium channels by either direct or indirect mechanisms inhibit channel activities and decrease their half-life. In contrast, the disruption of the network overcomes such an inhibitory effect and allows the activation of calcium channels. It is speculated that under normal physiological conditions these protein-protein interactions may work in a reversible manner and contribute to signal transduction in higher plants

    Identification of the Arabidopsis calmodulin-dependent NAD+ kinase that sustains the elicitor-induced oxidative burst

    Get PDF
    International audience17 NADP(H) is an essential cofactor of multiple metabolic processes in all living organisms. In plants, 18 NADP(H) is required as the substrate of Ca 2+-dependent NADPH oxidases which catalyze a reactive 19 oxygen species burst in response to various stimuli. While NADP + production in plants has long been 20 known to involve a Calmodulin and Calcium (CaM)/Ca 2+-dependent NAD + kinase, the nature of the 21 enzyme catalyzing this activity has remained enigmatic, as well as its role in plant physiology. Here, 22 thanks to a combination of proteomics, biochemistry, molecular biology and in vivo studies, we have 23 identified an Arabidopsis protein that catalyzes NADP + production exclusively in the presence of 24 CaM/Ca 2+. This new enzyme (NADKc) has a CaM-binding peptide located in its N-terminal region and 25 displays peculiar biochemical properties as well as different domain organization compared to known 26 plant NAD + kinases. In response to a pathogen elicitor, activity of NADKc, which is associated with the 27 mitochondrial periphery, contributes to an increase in the cellular NADP + concentration and to the 28 amplification of the elicitor-induced oxidative burst. Based on a phylogenetic analysis and enzymatic 29 assays, we propose that the CaM/Ca 2+-dependent NAD + kinase activity found in photosynthetic 3

    Microsome-associated proteome modifications of Arabidopsis seedlings grown on board the International Space Station reveal the possible effect on plants of space stresses other than microgravity

    Get PDF
    11p.-2 fig.-6 tab.Growing plants in space for using them in bioregenerative life support systems during long-term human spaceflights needs improvement of our knowledge in how plants can adapt to space growth conditions. In a previous study performed on board the International Space Station (GENARA A experiment STS-132) we evaluate the global changes that microgravity can exert on the membrane proteome of Arabidopsis seedlings. Here we report additional data from this space experiment, taking advantage of the availability in the EMCS of a centrifuge to evaluate the effects of cues other than microgravity on the relative distribution of membrane proteins. Among the 1484 membrane proteins quantified, 227 proteins displayed no abundance differences between ” g and 1 g in space, while their abundances significantly differed between 1 g in space and 1 g on ground. A majority of these proteins (176) were over-represented in space samples and mainly belong to families corresponding to protein synthesis, degradation, transport, lipid metabolism, or ribosomal proteins. In the remaining set of 51 proteins that were under-represented in membranes, aquaporins and chloroplastic proteins are majority. These sets of proteins clearly appear as indicators of plant physiological processes affected in space by stressful factors others than microgravity.The authors would like to thank the National Aeronautics and Space Administration (NASA) who successfully performed the spaceflight experiment; they also thank the astronauts for performing the required tasks on board the ISS. We acknowledge the Norwegian User Support and Operations Center team (NUSOC) for the ground and space preparation of the GENARA-A experiment and we thank the European Aeronautic Defense and Space Company (Astrium EADS) for the design and building of the hardware. We also thank the European Space Agency (ESA) and the Centre National d’Etudes Spatiales(CNES) for their scientific and financial support.Peer reviewe

    Tuberculosis in Sudan: a study of Mycobacterium tuberculosis strain genotype and susceptibility to anti-tuberculosis drugs

    Get PDF
    BACKGROUND: Sudan is a large country with a diverse population and history of civil conflict. Poverty levels are high with a gross national income per capita of less than two thousand dollars. The country has a high burden of tuberculosis (TB) with an estimated 50,000 incident cases during 2009, when the estimated prevalence was 209 cases per 100,000 of the population. Few studies have been undertaken on TB in Sudan and the prevalence of drug resistant disease is not known. METHODS: In this study Mycobacterium tuberculosis isolates from 235 patients attending three treatment centers in Sudan were screened for susceptibility to isoniazid, rifampicin, ethambutol and streptomycin by the proportion method on Lowenstein Jensen media. 232 isolates were also genotyped by spoligotyping. Demographic details of patients were recorded using a structured questionnaire. Statistical analyses were conducted to examine the associations between drug resistance with risk ratios computed for a set of risk factors (gender, age, case status--new or relapse, geographic origin of the patient, spoligotype, number of people per room, marital status and type of housing). RESULTS: Multi drug-resistant tuberculosis (MDR-TB), being resistance to at least rifampicin and isoniazid, was found in 5% (95% CI: 2,8) of new cases and 24% (95% CI: 14,34) of previously treated patients. Drug resistance was associated with previous treatment with risk ratios of 3.51 (95% CI: 2.69-4.60; p < 0.001) for resistance to any drug and 5.23 (95% CI: 2.30-11.90; p < 0.001) for MDR-TB. Resistance was also associated with the geographic region of origin of the patient, being most frequently observed in patients from the Northern region and least in the Eastern region with risk ratios of 7.43 (95%CI:3.42,16.18; p: < 0.001) and 14.09 (95%CI:1.80,110.53; p:0.026) for resistance to any drug and MDR-TB. The major genotype observed was of the Central Asia spoligotype family (CAS1_Delhi), representing 49% of the 232 isolates examined. CONCLUSIONS: We conclude that emergence of drug resistant tuberculosis has the potential to be a serious public health problem in Sudan and that strengthened tuberculosis control and improved monitoring of therapy is needed. Further surveillance is required to fully ascertain the extent of the problem

    Aequorin-based measurements of intracellular Ca(2+)-signatures in plant cells

    Get PDF
    Due to the involvement of calcium as a main second messenger in the plant signaling pathway, increasing interest has been focused on the calcium signatures supposed to be involved in the patterning of the specific response associated to a given stimulus. In order to follow these signatures we described here the practical approach to use the non-invasive method based on the aequorin technology. Besides reviewing the advantages and disadvantages of this method we report on results showing the usefulness of aequorin to study the calcium response to biotic (elicitors) and abiotic stimuli (osmotic shocks) in various compartments of plant cells such as cytosol and nucleus

    Microgravity induces changes in microsome-associated proteins of Arabidopsis seedlings grown on board the international space station

    Get PDF
    18 p.-8 fig.-2 tab. Mazars, Christian et alt.The ‘‘GENARA A’’ experiment was designed to monitor global changes in the proteome of membranes of Arabidopsis thaliana seedlings subjected to microgravity on board the International Space Station (ISS). For this purpose, 12-day-old seedlings were grown either in space, in the European Modular Cultivation System (EMCS) under microgravity or on a 1 g centrifuge, or on the ground. Proteins associated to membranes were selectively extracted from microsomes and identified and quantified through LC-MS-MS using a label-free method. Among the 1484 proteins identified and quantified in the 3 conditions mentioned above, 80 membrane-associated proteins were significantly more abundant in seedlings grown under microgravity in space than under 1 g (space and ground) and 69 were less abundant. Clustering of these proteins according to their predicted function indicates that proteins associated to auxin metabolism and trafficking were depleted in the microsomal fraction in mg space conditions, whereas proteins associated to stress responses, defence and metabolism were more abundant in mg than in 1 g indicating that microgravity is perceived by plants as a stressful environment. These results clearly indicate that a global membrane proteomics approach gives a snapshot of the cell status and its signaling activity in response to microgravity and highlight the major processes affected.Funding was supported by CNRS -CNES - UniversitĂ© Paul Sabatier.Peer reviewe
    • 

    corecore