170 research outputs found
Approximate Approximations from scattered data
The aim of this paper is to extend the approximate quasi-interpolation on a
uniform grid by dilated shifts of a smooth and rapidly decaying function on a
uniform grid to scattered data quasi-interpolation. It is shown that high order
approximation of smooth functions up to some prescribed accuracy is possible,
if the basis functions, which are centered at the scattered nodes, are
multiplied by suitable polynomials such that their sum is an approximate
partition of unity. For Gaussian functions we propose a method to construct the
approximate partition of unity and describe the application of the new
quasi-interpolation approach to the cubature of multi-dimensional integral
operators.Comment: 29 pages, 17 figure
Computation of volume potentials over bounded domains via approximate approximations
We obtain cubature formulas of volume potentials over bounded domains
combining the basis functions introduced in the theory of approximate
approximations with their integration over the tangential-halfspace. Then the
computation is reduced to the quadrature of one dimensional integrals over the
halfline. We conclude the paper providing numerical tests which show that these
formulas give very accurate approximations and confirm the predicted order of
convergence.Comment: 18 page
Mesoscale models and approximate solutions for solids containing clouds of voids
For highly perforated domains the paper addresses a novel approach to study mixed boundary value problems for the equations of linear elasticity in the framework of mesoscale approximations. There are no assumptions of periodicity involved in the description of the geometry of the domain. The size of the perforations is small compared to the minimal separation between neighboring defects and here we discuss a class of problems in perforated domains, which are not covered by the homogenization approximations. The mesoscale approximations presented here are uniform. Explicit asymptotic formulas are supplied with the remainder estimates. Numerical illustrations, demonstrating the efficiency of the asymptotic approach developed here, are also given
Eigenvalue problem in a solid with many inclusions: asymptotic analysis
We construct the asymptotic approximation to the first eigenvalue and
corresponding eigensolution of Laplace's operator inside a domain containing a
cloud of small rigid inclusions. The separation of the small inclusions is
characterised by a small parameter which is much larger compared with the
nominal size of inclusions. Remainder estimates for the approximations to the
first eigenvalue and associated eigenfield are presented. Numerical
illustrations are given to demonstrate the efficiency of the asymptotic
approach compared to conventional numerical techniques, such as the finite
element method, for three-dimensional solids containing clusters of small
inclusions.Comment: 55 pages, 5 figure
Approximation of Uncoupled Quasi-Static Thermoelasticity Solutions Based on Gaussians
A fast approximation method to three dimensional equations in quasi-static uncoupled thermoelasticity is proposed. We approximate the density via Gaussian approximating functions introduced in the method approximate approximations. In this way the action of the integral operators on such functions is presented in a simple analytical form. If the density has separated representation, the problem is reduced to the computation of one-dimensional integrals which admit efficient cubature procedures. The comparison of the numerical and exact solution shows that these formulas are accurate and provide the predicted approximation rate 2 , 4 , 6 and 8
- …