170 research outputs found

    Approximate Approximations from scattered data

    Full text link
    The aim of this paper is to extend the approximate quasi-interpolation on a uniform grid by dilated shifts of a smooth and rapidly decaying function on a uniform grid to scattered data quasi-interpolation. It is shown that high order approximation of smooth functions up to some prescribed accuracy is possible, if the basis functions, which are centered at the scattered nodes, are multiplied by suitable polynomials such that their sum is an approximate partition of unity. For Gaussian functions we propose a method to construct the approximate partition of unity and describe the application of the new quasi-interpolation approach to the cubature of multi-dimensional integral operators.Comment: 29 pages, 17 figure

    Computation of volume potentials over bounded domains via approximate approximations

    Get PDF
    We obtain cubature formulas of volume potentials over bounded domains combining the basis functions introduced in the theory of approximate approximations with their integration over the tangential-halfspace. Then the computation is reduced to the quadrature of one dimensional integrals over the halfline. We conclude the paper providing numerical tests which show that these formulas give very accurate approximations and confirm the predicted order of convergence.Comment: 18 page

    Theory of multipliers in spaces of differentiable functions and its applications

    Get PDF

    Mesoscale models and approximate solutions for solids containing clouds of voids

    Get PDF
    For highly perforated domains the paper addresses a novel approach to study mixed boundary value problems for the equations of linear elasticity in the framework of mesoscale approximations. There are no assumptions of periodicity involved in the description of the geometry of the domain. The size of the perforations is small compared to the minimal separation between neighboring defects and here we discuss a class of problems in perforated domains, which are not covered by the homogenization approximations. The mesoscale approximations presented here are uniform. Explicit asymptotic formulas are supplied with the remainder estimates. Numerical illustrations, demonstrating the efficiency of the asymptotic approach developed here, are also given

    Eigenvalue problem in a solid with many inclusions: asymptotic analysis

    Get PDF
    We construct the asymptotic approximation to the first eigenvalue and corresponding eigensolution of Laplace's operator inside a domain containing a cloud of small rigid inclusions. The separation of the small inclusions is characterised by a small parameter which is much larger compared with the nominal size of inclusions. Remainder estimates for the approximations to the first eigenvalue and associated eigenfield are presented. Numerical illustrations are given to demonstrate the efficiency of the asymptotic approach compared to conventional numerical techniques, such as the finite element method, for three-dimensional solids containing clusters of small inclusions.Comment: 55 pages, 5 figure

    Approximation of Uncoupled Quasi-Static Thermoelasticity Solutions Based on Gaussians

    Get PDF
    A fast approximation method to three dimensional equations in quasi-static uncoupled thermoelasticity is proposed. We approximate the density via Gaussian approximating functions introduced in the method approximate approximations. In this way the action of the integral operators on such functions is presented in a simple analytical form. If the density has separated representation, the problem is reduced to the computation of one-dimensional integrals which admit efficient cubature procedures. The comparison of the numerical and exact solution shows that these formulas are accurate and provide the predicted approximation rate 2 , 4 , 6 and 8
    • …
    corecore