18 research outputs found

    Recasting the agreements to re-humanize STEM education

    Get PDF
    The purpose of education is to understand and help address local and global problems to better society and the world. A key player in this endeavor should be STEM education, which has the potential to equip learners with the skills and knowledge necessary to address intersectional issues such as climate change, health and income disparities, racism, and political divisions. However, in this article we argue that despite the transformative potential of STEM education, it remains far removed from most people’s lived experiences and is detached from the real-world social, political, and economic contexts in which it exists. This detachment not only perpetuates existing inequities by failing to meet the specific needs and reflect the experiences of these communities, but it also hampers STEM education’s capacity to address the very local and global problems it is purported to solve. By remaining removed from the tangible, real-world contexts in which it exists, STEM education cannot fully harness its potential to better humanity. To address these issues, we propose humanizing STEM education by intentionally and explicitly grounding all work in the recognition of the inherent worth and dignity of all students, regardless of their background. We begin the article by critically examining the typically unspoken pre-existing assumptions or “agreements” that govern and dictate the norms of teaching and learning within STEM, ways of approaching framing STEM education that we often take for granted as necessary and true. We propose new agreements that expand the ways in which we think about STEM education, in hopes of making STEM education more accessible, inclusive, relevant, responsive, and reparative. Throughout, we deliberate on the notion of being human. We argue that to envision a future of humanistic STEM, one that is intentionally grounded in an ethics of care and equity for all, including the environment, it is necessary to continue to make visible and reimagine the unarticulated assumptions that underlie our current approaches to STEM education and practice

    In Their Own Voice: Reclaiming the Value of Liberal Arts at Community Colleges

    No full text

    Table_2_Recasting the agreements to re-humanize STEM education.pdf

    No full text
    The purpose of education is to understand and help address local and global problems to better society and the world. A key player in this endeavor should be STEM education, which has the potential to equip learners with the skills and knowledge necessary to address intersectional issues such as climate change, health and income disparities, racism, and political divisions. However, in this article we argue that despite the transformative potential of STEM education, it remains far removed from most people’s lived experiences and is detached from the real-world social, political, and economic contexts in which it exists. This detachment not only perpetuates existing inequities by failing to meet the specific needs and reflect the experiences of these communities, but it also hampers STEM education’s capacity to address the very local and global problems it is purported to solve. By remaining removed from the tangible, real-world contexts in which it exists, STEM education cannot fully harness its potential to better humanity. To address these issues, we propose humanizing STEM education by intentionally and explicitly grounding all work in the recognition of the inherent worth and dignity of all students, regardless of their background. We begin the article by critically examining the typically unspoken pre-existing assumptions or “agreements” that govern and dictate the norms of teaching and learning within STEM, ways of approaching framing STEM education that we often take for granted as necessary and true. We propose new agreements that expand the ways in which we think about STEM education, in hopes of making STEM education more accessible, inclusive, relevant, responsive, and reparative. Throughout, we deliberate on the notion of being human. We argue that to envision a future of humanistic STEM, one that is intentionally grounded in an ethics of care and equity for all, including the environment, it is necessary to continue to make visible and reimagine the unarticulated assumptions that underlie our current approaches to STEM education and practice.</p

    Table_1_Recasting the agreements to re-humanize STEM education.pdf

    No full text
    The purpose of education is to understand and help address local and global problems to better society and the world. A key player in this endeavor should be STEM education, which has the potential to equip learners with the skills and knowledge necessary to address intersectional issues such as climate change, health and income disparities, racism, and political divisions. However, in this article we argue that despite the transformative potential of STEM education, it remains far removed from most people’s lived experiences and is detached from the real-world social, political, and economic contexts in which it exists. This detachment not only perpetuates existing inequities by failing to meet the specific needs and reflect the experiences of these communities, but it also hampers STEM education’s capacity to address the very local and global problems it is purported to solve. By remaining removed from the tangible, real-world contexts in which it exists, STEM education cannot fully harness its potential to better humanity. To address these issues, we propose humanizing STEM education by intentionally and explicitly grounding all work in the recognition of the inherent worth and dignity of all students, regardless of their background. We begin the article by critically examining the typically unspoken pre-existing assumptions or “agreements” that govern and dictate the norms of teaching and learning within STEM, ways of approaching framing STEM education that we often take for granted as necessary and true. We propose new agreements that expand the ways in which we think about STEM education, in hopes of making STEM education more accessible, inclusive, relevant, responsive, and reparative. Throughout, we deliberate on the notion of being human. We argue that to envision a future of humanistic STEM, one that is intentionally grounded in an ethics of care and equity for all, including the environment, it is necessary to continue to make visible and reimagine the unarticulated assumptions that underlie our current approaches to STEM education and practice.</p

    Moving towards More Diverse and Welcoming Conference Spaces: Data-Driven Perspectives from Biology Education Research Scholars.

    No full text
    Academic conferences are integral to the dissemination of novel research findings and discussion of pioneering ideas across all postsecondary disciplines. For some participants, these environments are spaces to develop new collaborations, research projects, and social bonds; however, for others, conferences can be a place of marginalization and outright hostility. To assess how diverse individuals experience conference spaces, we interpreted results from a conference climate survey filled out by 198 of 482 registrants of the Society for the Advancement of Biology Education Research (SABER) West 2021 conference. Analysis of the survey data was conducted by six biology education researchers, who in addition to raising conference participant voices, provide insights, and next steps whose implementation can promote greater participant equity, representation, and engagement in future science, technology, engineering, and math (STEM) education conferences specifically and potentially all academic conference spaces more broadly

    The Drosophila melanogaster Phospholipid Flippase dATP8B Is Required for Odorant Receptor Function

    Get PDF
    The olfactory systems of insects are fundamental to all aspects of their behaviour, and insect olfactory receptor neurons (ORNs) exhibit exquisite specificity and sensitivity to a wide range of environmental cues. In Drosophila melanogaster, ORN responses are determined by three different receptor families, the odorant (Or), ionotropic-like (IR) and gustatory (Gr) receptors. However, the precise mechanisms of signalling by these different receptor families are not fully understood. Here we report the unexpected finding that the type 4 P-type ATPase phospholipid transporter dATP8B, the homologue of a protein associated with intrahepatic cholestasis and hearing loss in humans, is crucial for Drosophila olfactory responses. Mutations in dATP8B severely attenuate sensitivity of odorant detection specifically in Or-expressing ORNs, but do not affect responses mediated by IR or Gr receptors. Accordingly, we find dATP8B to be expressed in ORNs and localised to the dendritic membrane of the olfactory neurons where signal transduction occurs. Localisation of Or proteins to the dendrites is unaffected in dATP8B mutants, as is dendrite morphology, suggesting instead that dATP8B is critical for Or signalling. As dATP8B is a member of the phospholipid flippase family of ATPases, which function to determine asymmetry in phospholipid composition between the outer and inner leaflets of plasma membranes, our findings suggest a requirement for phospholipid asymmetry in the signalling of a specific family of chemoreceptor proteins

    Orco and Or22a localize normally to the dendrites in <i>dATP8B</i> mutants.

    No full text
    <p>14 µm thick antennal sections from wild type flies (CS-5) were stained for anti-Orco or for anti-Or22a. No difference in either Orco or Or22a localisation to the outer dendrites was observed in <i>dATP8B</i> mutants (<i>dATP8B<sup>f05203</sup></i>) compared to control flies.</p

    Orco and Or22a localize normally to the dendrites in <i>dATP8B</i> mutants.

    No full text
    <p>14 µm thick antennal sections from wild type flies (CS-5) were stained for anti-Orco or for anti-Or22a. No difference in either Orco or Or22a localisation to the outer dendrites was observed in <i>dATP8B</i> mutants (<i>dATP8B<sup>f05203</sup></i>) compared to control flies.</p
    corecore