8 research outputs found

    Composite Dark Matter and Puzzles of Dark Matter Searches

    Full text link
    Positive results of dark matter searches in DAMA/NaI and DAMA/LIBRA experiments, being put together with the results of other groups, can imply nontrivial particle physics solutions for cosmological dark matter. Stable particles with charge -2, bound with primordial helium in O-helium "atoms" (OHe), represent a specific Warmer than Cold nuclear-interacting form of dark matter. Slowed down in the terrestrial matter, OHe is elusive for direct methods of underground Dark matter detection used in cryogenic experiments. However radiative capture of OHe by Na and I nuclei can lead to annual variations of energy release in the interval of energy 2-5 keV in DAMA/NaI and DAMA/LIBRA experiments.Comment: 10 pages, 2 figures, Invited contribution to proceeding of the 4th International Workshop on Astronomy and Relativistic Astrophysics (IWARA09

    Towards Nuclear Physics of OHe Dark Matter

    Full text link
    The nonbaryonic dark matter of the Universe can consist of new stable charged particles, bound in heavy "atoms" by ordinary Coulomb interaction. If stable particles OO^{--} with charge -2 are in excess over their antiparticles (with charge +2), the primordial helium, formed in Big Bang Nucleosynthesis, captures all OO^{--} in neutral "atoms" of O-helium (OHe). Interaction with nuclei plays crucial role in the cosmological evolution of OHe and in the effects of these dark atoms as nuclear interacting dark matter. Slowed down in terrestrial matter OHe atoms cause negligible effects of nuclear recoil in underground detectors, but can experience radiative capture by nuclei. Local concentration of OHe in the matter of detectors is rapidly adjusted to the incoming flux of cosmic OHe and possess annual modulation due to Earth's orbital motion around the Sun. The potential of OHe-nucleus interaction is determined by polarization of OHe by the Coulomb and nuclear force of the approaching nucleus. Stark-like effect by the Coulomb force of nucleus makes this potential attractive at larger distances, while change of polarization by the effect of nuclear force gives rise to a potential barrier, preventing merging of nucleus with helium shell of OHe atom. The existence of the corresponding shallow well beyond the nucleus can provide the conditions, at which nuclei in the matter of DAMA/NaI and DAMA/LIBRA detectors have a few keV binding energy with OHe, corresponding to a level in this well. Annual modulation of the radiative capture rate to this level can reproduce DAMA results. The OHe hypothesis can qualitatively explain the controversy in the results of direct dark matter searches by specifics of OHe nuclear interaction with the matter of underground detectors.Comment: to be published in Proceedings of XIV Bled Workshop "What comes beyond the Standard model?" (Bled, Slovenia

    Puzzles of Dark Matter - More Light on Dark Atoms?

    Full text link
    Positive results of dark matter searches in experiments DAMA/NaI and DAMA/LIBRA confronted with results of other groups can imply nontrivial particle physics solutions for cosmological dark matter. Stable particles with charge -2, bound with primordial helium in O-helium "atoms" (OHe), represent a specific nuclear-interacting form of dark matter. Slowed down in the terrestrial matter, OHe is elusive for direct methods of underground Dark matter detection using its nuclear recoil. However, low energy binding of OHe with sodium nuclei can lead to annual variations of energy release from OHe radiative capture in the interval of energy 2-4 keV in DAMA/NaI and DAMA/LIBRA experiments. At nuclear parameters, reproducing DAMA results, the energy release predicted for detectors with chemical content other than NaI differ in the most cases from the one in DAMA detector. Moreover there is no bound systems of OHe with light and heavy nuclei, so that there is no radiative capture of OHe in detectors with xenon or helium content. Due to dipole Coulomb barrier, transitions to more energetic levels of Na+OHe system with much higher energy release are suppressed in the correspondence with the results of DAMA experiments. The proposed explanation inevitably leads to prediction of abundance of anomalous Na, corresponding to the signal, observed by DAMA.Comment: Contribution to Proceedings of XIII Bled Workshop "What Comes beyond the Standard Model?

    Albiglutide and cardiovascular outcomes in patients with type 2 diabetes and cardiovascular disease (Harmony Outcomes): a double-blind, randomised placebo-controlled trial

    Get PDF
    Background: Glucagon-like peptide 1 receptor agonists differ in chemical structure, duration of action, and in their effects on clinical outcomes. The cardiovascular effects of once-weekly albiglutide in type 2 diabetes are unknown. We aimed to determine the safety and efficacy of albiglutide in preventing cardiovascular death, myocardial infarction, or stroke. Methods: We did a double-blind, randomised, placebo-controlled trial in 610 sites across 28 countries. We randomly assigned patients aged 40 years and older with type 2 diabetes and cardiovascular disease (at a 1:1 ratio) to groups that either received a subcutaneous injection of albiglutide (30–50 mg, based on glycaemic response and tolerability) or of a matched volume of placebo once a week, in addition to their standard care. Investigators used an interactive voice or web response system to obtain treatment assignment, and patients and all study investigators were masked to their treatment allocation. We hypothesised that albiglutide would be non-inferior to placebo for the primary outcome of the first occurrence of cardiovascular death, myocardial infarction, or stroke, which was assessed in the intention-to-treat population. If non-inferiority was confirmed by an upper limit of the 95% CI for a hazard ratio of less than 1·30, closed testing for superiority was prespecified. This study is registered with ClinicalTrials.gov, number NCT02465515. Findings: Patients were screened between July 1, 2015, and Nov 24, 2016. 10 793 patients were screened and 9463 participants were enrolled and randomly assigned to groups: 4731 patients were assigned to receive albiglutide and 4732 patients to receive placebo. On Nov 8, 2017, it was determined that 611 primary endpoints and a median follow-up of at least 1·5 years had accrued, and participants returned for a final visit and discontinuation from study treatment; the last patient visit was on March 12, 2018. These 9463 patients, the intention-to-treat population, were evaluated for a median duration of 1·6 years and were assessed for the primary outcome. The primary composite outcome occurred in 338 (7%) of 4731 patients at an incidence rate of 4·6 events per 100 person-years in the albiglutide group and in 428 (9%) of 4732 patients at an incidence rate of 5·9 events per 100 person-years in the placebo group (hazard ratio 0·78, 95% CI 0·68–0·90), which indicated that albiglutide was superior to placebo (p<0·0001 for non-inferiority; p=0·0006 for superiority). The incidence of acute pancreatitis (ten patients in the albiglutide group and seven patients in the placebo group), pancreatic cancer (six patients in the albiglutide group and five patients in the placebo group), medullary thyroid carcinoma (zero patients in both groups), and other serious adverse events did not differ between the two groups. There were three (<1%) deaths in the placebo group that were assessed by investigators, who were masked to study drug assignment, to be treatment-related and two (<1%) deaths in the albiglutide group. Interpretation: In patients with type 2 diabetes and cardiovascular disease, albiglutide was superior to placebo with respect to major adverse cardiovascular events. Evidence-based glucagon-like peptide 1 receptor agonists should therefore be considered as part of a comprehensive strategy to reduce the risk of cardiovascular events in patients with type 2 diabetes. Funding: GlaxoSmithKline

    Analysis of Ground-Level Enhancements:strong events are hard

    No full text
    Abstract Ground Level Enhancements (GLEs) recorded by neutron monitor detectors are characterized by a variety of energy spectra of solar energetic particles (SEP), which vary between soft (as in August 1972) and hard (February 1956) ones. The aim of this work is to investigate the statistical relation between the hardness of the energy spectra and the event-integrated intensity. We calculated the event-integrated omnidirectional fluence of protons above 30 MeV (F₃₀) and above 200 MeV (F₂₀₀) using energy spectra reconstructed from both ground-based and space-borne data. The ratio of the F₃₀-to-F₂₀₀ fluences is considered as an index of the hardness of the events spectra. The main results of this study is that all strong events (with the event-integrated intensity greater than 100%*hr) are characterized by a hard or very hard spectrum, while weak and moderate events do not show any clear pattern between the hardness and the intensity of the event

    Enhancing Lithium and Sodium Storage Properties of TiO2(B) Nanobelts by Doping with Nickel and Zinc

    No full text
    Nickel- and zinc-doped TiO2(B) nanobelts were synthesized using a hydrothermal technique. It was found that the incorporation of 5 at.% Ni into bronze TiO2 expanded the unit cell by 4%. Furthermore, Ni dopant induced the 3d energy levels within TiO2(B) band structure and oxygen defects, narrowing the band gap from 3.28 eV (undoped) to 2.70 eV. Oppositely, Zn entered restrictedly into TiO2(B), but nonetheless, improves its electronic properties (Eg is narrowed to 3.21 eV). The conductivity of nickel- (2.24 × 10−8 S·cm−1) and zinc-containing (3.29 × 10−9 S·cm−1) TiO2(B) exceeds that of unmodified TiO2(B) (1.05 × 10−10 S·cm−1). When tested for electrochemical storage, nickel-doped mesoporous TiO2(B) nanobelts exhibited improved electrochemical performance. For lithium batteries, a reversible capacity of 173 mAh·g−1 was reached after 100 cycles at the current load of 50 mA·g−1, whereas, for unmodified and Zn-doped samples, around 140 and 151 mAh·g−1 was obtained. Moreover, Ni doping enhanced the rate capability of TiO2(B) nanobelts (104 mAh·g−1 at a current density of 1.8 A·g−1). In terms of sodium storage, nickel-doped TiO2(B) nanobelts exhibited improved cycling with a stabilized reversible capacity of 97 mAh·g−1 over 50 cycles at the current load of 35 mA·g−1
    corecore