68 research outputs found

    Ubiquitination site preferences in anaphase promoting complex/cyclosome (APC/C) substrates.

    Get PDF
    Ordered progression of mitosis requires precise control in abundance of mitotic regulators. The anaphase promoting complex/cyclosome (APC/C) ubiquitin ligase plays a key role by directing ubiquitin-mediated destruction of targets in a temporally and spatially defined manner. Specificity in APC/C targeting is conferred through recognition of substrate D-box and KEN degrons, while the specificity of ubiquitination sites, as another possible regulated dimension, has not yet been explored. Here, we present the first analysis of ubiquitination sites in the APC/C substrate ubiquitome. We show that KEN is a preferred ubiquitin acceptor in APC/C substrates and that acceptor sites are enriched in predicted disordered regions and flanked by serine residues. Our experimental data confirm a role for the KEN lysine as an ubiquitin acceptor contributing to substrate destruction during mitotic progression. Using Aurora A and Nek2 kinases as examples, we show that phosphorylation on the flanking serine residue could directly regulate ubiquitination and subsequent degradation of substrates. We propose a novel layer of regulation in substrate ubiquitination, via phosphorylation adjacent to the KEN motif, in APC/C-mediated targeting

    How to Inactivate Human Ubiquitin E3 Ligases by Mutation

    Get PDF
    E3 ubiquitin ligases are the ultimate enzymes involved in the transfer of ubiquitin to substrate proteins, a process that determines the fate of the modified protein. Numerous diseases are caused by defects in the ubiquitin-proteasome machinery, including when the activity of a given E3 ligase is hampered. Thus, inactivation of E3 ligases and the resulting effects at molecular or cellular level have been the focus of many studies during the last few years. For this purpose, site-specific mutation of key residues involved in either protein interaction, substrate recognition or ubiquitin transfer have been reported to successfully inactivate E3 ligases. Nevertheless, it is not always trivial to predict which mutation(s) will block the catalytic activity of a ligase. Here we review over 250 site-specific inactivating mutations that have been carried out in 120 human E3 ubiquitin ligases. We foresee that the information gathered here will be helpful for the design of future experimental strategies.This work was supported by Spanish MINECO (grant SAF2016-76898-P) cofinanced with FEDER funds. JR was funded with a postdoctoral fellowship from the University of the Basque Country (UPV/EHU)

    Multi-story Parkin.

    Get PDF

    Neuronal Proteomic Analysis Of The Ubiquitinated Substrates Of The Disease-Linked E3 Ligases Parkin And Ube3a

    Get PDF
    Both Parkin and UBE3A are E3 ubiquitin ligases whose mutations result in severe brain dysfunction. Several of their substrates have been identified using cell culture models in combination with proteasome inhibitors, but not in more physiological settings. We recently developed the (bio)Ub strategy to isolate ubiquitinated proteins in flies and have now identified by mass spectrometry analysis the neuronal proteins differentially ubiquitinated by those ligases. This is an example of how flies can be used to provide biological material in order to reveal steady state substrates of disease causing genes. Collectively our results provide new leads to the possible physiological functions of the activity of those two disease causing E3 ligases. Particularly, in the case of Parkin the novelty of our data originates from the experimental setup, which is not overtly biased by acute mitochondrial depolarisation. In the case of UBE3A, it is the first time that a nonbiased screen for its neuronal substrates has been reported.The authors thank Michael Clague for insightful comments on an early version of the manuscript. Ugo Mayor, Nerea Osinalde, and Jesus M. Arizmendi are supported by the Spanish MINECO (Grant no. SAF2016-76898-P)

    SUMOylation in the control of cholesterol homeostasis

    Get PDF
    SUMOylation-protein modification by the small ubiquitin-related modifier (SUMO)-affects several cellular processes by modulating the activity, stability, interactions or subcellular localization of a variety of substrates. SUMO modification is involved in most cellular processes required for the maintenance of metabolic homeostasis. Cholesterol is one of the main lipids required to preserve the correct cellular function, contributing to the composition of the plasma membrane and participating in transmembrane receptor signalling. Besides these functions, cholesterol is required for the synthesis of steroid hormones, bile acids, oxysterols and vitamin D. Cholesterol levels need to be tightly regulated: in excess, it is toxic to the cell, and the disruption of its homeostasis is associated with various disorders like atherosclerosis and cardiovascular diseases. This review focuses on the role of SUMO in the regulation of proteins involved in the metabolism of cholesterol.We apologize to those whose related publications could not be cited due to space limitations. We are grateful to all members of Barrio's Lab for comments and suggestions. R.B. acknowledges grant nos. BFU2017-84653-P (MINECO/AEI/FEDER/EU), SEV-2016-0644 (Severo Ochoa Excellence Program, MINECO/AEI), 765445-EU (UbiCODE Program, EU) and SAF2017-90900-REDT (UBIRed Program, MINECO/AEI)

    Detailed Dissection of UBE3A-Mediated DDI1 Ubiquitination

    Get PDF
    The ubiquitin E3 ligase UBE3A has been widely reported to interact with the proteasome, but it is still unclear how this enzyme regulates by ubiquitination the different proteasomal subunits. The proteasome receptor DDI1 has been identified both in Drosophila photoreceptor neurons and in human neuroblastoma cells in culture as a direct substrate of UBE3A. Here, we further characterize this regulation, by identifying the UBE3A-dependent ubiquitination sites and ubiquitin chains formed on DDI1. Additionally, we found one deubiquitinating enzyme that is capable of reversing the action of UBE3A on DDI1. The complete characterization of the ubiquitination pathway of an UBE3A substrate is important due to the role of this E3 ligase in rare neurological disorders as Angelman syndrome

    The Ubiquitin Ligase Ariadne-1 Regulates Neurotransmitter Release Via Ubiquitination of NSF

    Get PDF
    Ariadne-1 (Ari-1) is an E3 ubiquitin-ligase essential for neuronal development, but whose neuronal substrates are yet to be identified. To search for putative Ari-1 substrates, we used an in vivo ubiquitin biotinylation strategy coupled to quantitative proteomics of Drosophila heads. We identified sixteen candidates that met the established criteria: a significant change of at least two-fold increase on ubiquitination, with at least two unique peptides identified. Amongst those candidates, we identified Comatose (Comt), the homologue of the N-ethylmaleimide sensitive factor (NSF), which is involved in neurotransmitter release. Using a pulldown approach that relies on the overexpression and stringent isolation of a GFP-fused construct, we validate Comt/NSF to be an ubiquitination substrate of Ari-1 in fly neurons, resulting in the preferential monoubiquitination of Comt/NSF. We tested the possible functional relevance of this modification using Ari-1 loss of function mutants, which displayed a lower rate of spontaneous neurotransmitter release due to failures at the pre-synaptic side. By contrast, evoked release in Ari-1 mutants was enhanced compared to controls in a Ca2+ dependent manner without modifications in the number of active zones, indicating that the probability of release per synapse is increased in these mutants. This phenotype distinction between spontaneous versus evoked release suggests that NSF activity may discriminate between these two types of vesicle fusion. Our results thus provide a mechanism to regulate NSF activity in the synapse through Ari-1-dependent ubiquitinationThis research was funded by grants BFU2015-65685 and PGC2018-094630-B-100 from the Spanish Ministry of Economy to A. F. and grant SAF2016-76898-P from the Spanish Ministry of Economy cofinanced with FEDER funds to U. M. J. R. was supported with a postdoctoral research fellowship from the University of the Basque Country (UPV/EHU

    The role of SUMOylation during development

    Get PDF
    During the development of multicellular organisms, transcriptional regulation plays an important role in the control of cell growth, differentiation and morphogenesis. SUMOylation is a reversible post-translational process involved in transcriptional regulation through the modification of transcription factors and through chromatin remodelling (either modifying chromatin remodelers or acting as a `molecular glue' by promoting recruitment of chromatin regulators). SUMO modification results in changes in the activity, stability, interactions or localization of its substrates, which affects cellular processes such as cell cycle progression, DNA maintenance and repair or nucleocytoplasmic transport. This review focuses on the role of SUMO machinery and the modification of target proteins during embryonic development and organogenesis of animals, from invertebrates to mammals.We apologize to those whose related publication could not be cited due to space limitations. We are grateful to all members of Barrio's Lab for comments and suggestions. R.B. acknowledges grants BFU2017-84653-P (MINECO/AEI/FEDER/EU), SEV-2016-0644 (Severo Ochoa Excellence Program, MINECO/AEI), 765445-EU (UbiCODE Program, EU), SAF2017-90900-REDT (UBIRed Program, MINECO/AEI)
    • …
    corecore