73 research outputs found

    The Spectroscopic Orbit of the Planetary Companion Transiting HD209458

    Get PDF
    We report a spectroscopic orbit with period P = 3.52433 +/- 0.00027 days for the planetary companion that transits the solar-type star HD209458. For the metallicity, mass, and radius of the star we derive [Fe/H] = 0.00 +/- 0.02, M = 1.1 +/- 0.1 solar masses, and R = 1.3 +/- 0.1 solar radii. This is based on a new analysis of the iron lines in our HIRES template spectrum, and also on the absolute magnitude and color of the star, and uses isochrones from four different sets of stellar evolution models. Using these values for the stellar parameters we reanalyze the transit data and derive an orbital inclination of i = 85.2 +/- 1.4 degrees. For the planet we derive a mass of Mp = 0.69 +/- 0.05 Jupiter masses, a radius of Rp = 1.54 +/- 0.18 Jupiter radii, and a density of 0.23 +/- 0.08 grams per cubic cm.Comment: 11 pages, 1 figure, 2 tables, LaTex, aastex, accepted for publication by ApJ Letter

    An extrasolar planetary system with three Neptune-mass planets

    Get PDF
    Over the past two years, the search for low-mass extrasolar planets has led to the detection of seven so-called 'hot Neptunes' or 'super-Earths' around Sun-like stars. These planets have masses 5-20 times larger than the Earth and are mainly found on close-in orbits with periods of 2-15 days. Here we report a system of three Neptune-mass planets with periods of 8.67, 31.6 and 197 days, orbiting the nearby star HD 69830. This star was already known to show an infrared excess possibly caused by an asteroid belt within 1 AU (the Sun-Earth distance). Simulations show that the system is in a dynamically stable configuration. Theoretical calculations favour a mainly rocky composition for both inner planets, while the outer planet probably has a significant gaseous envelope surrounding its rocky/icy core; the outer planet orbits within the habitable zone of this star.Comment: 17 pages, 3 figures, preprint of the paper published in Nature on May 18, 200

    The CoRoT-7 planetary system: two orbiting super-Earths

    Full text link
    We report on an intensive observational campaign carried out with HARPS at the 3.6 m telescope at La Silla on the star CoRoT-7. Additional simultaneous photometric measurements carried out with the Euler Swiss telescope have demonstrated that the observed radial velocity variations are dominated by rotational modulation from cool spots on the stellar surface. Several approaches were used to extract the radial velocity signal of the planet(s) from the stellar activity signal. First, a simple pre-whitening procedure was employed to find and subsequently remove periodic signals from the complex frequency structure of the radial velocity data. The dominant frequency in the power spectrum was found at 23 days, which corresponds to the rotation period of CoRoT-7. The 0.8535 day period of CoRoT-7b planetary candidate was detected with an amplitude of 3.3 m s[SUP]-1[/SUP]. Most other frequencies, some with amplitudes larger than the CoRoT-7b signal, are most likely associated with activity. A second approach used harmonic decomposition of the rotational period and up to the first three harmonics to filter out the activity signal from radial velocity variations caused by orbiting planets. After correcting the radial velocity data for activity, two periodic signals are detected: the CoRoT-7b transit period and a second one with a period of 3.69 days and an amplitude of 4 m s[SUP]-1[/SUP]. This second signal was also found in the pre-whitening analysis. We attribute the second signal to a second, more remote planet CoRoT-7c . The orbital solution of both planets is compatible with circular orbits. The mass of CoRoT-7b is 4.8±0.8 (M[SUB]â [/SUB]) and that of CoRoT-7c is 8.4± 0.9 (M[SUB]â [/SUB]), assuming both planets are on coplanar orbits. We also investigated the false positive scenario of a blend by a faint stellar binary, and this may be rejected by the stability of the bisector on a nightly scale. According to their masses both planets belong to the super-Earth planet category. The average density of CoRoT-7b is Ï =5.6± 1.3 g cm[SUP]-3[/SUP], similar to the Earth. The CoRoT-7 planetary system provides us with the first insight into the physical nature of short period super-Earth planets recently detected by radial velocity surveys. These planets may be denser than Neptune and therefore likely made of rocks like the Earth, or a mix of water ice and rocks. Based on observations made with HARPS spectrograph on the 3.6-m ESO telescope and the EULER Swiss telescope at La Silla Observatory, Chile. The HARPS results presented in this paper (Appendix A) are available in electronic form at http://www.aanda.org and at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/506/30

    The Impact of Delayed Treatment of Uncomplicated \u3ci\u3eP. falciparum\u3c/i\u3e Malaria on Progression to Severe Malaria: A Systematic Review and a Pooled Multicentre Individual-Patient Meta-Analysis

    Get PDF
    BACKGROUND: Delay in receiving treatment for uncomplicated malaria (UM) is often reported to increase the risk of developing severe malaria (SM), but access to treatment remains low in most high-burden areas. Understanding the contribution of treatment delay on progression to severe disease is critical to determine how quickly patients need to receive treatment and to quantify the impact of widely implemented treatment interventions, such as \u27test-and-treat\u27 policies administered by community health workers (CHWs). We conducted a pooled individual-participant meta-analysis to estimate the association between treatment delay and presenting with SM. METHODS AND FINDINGS: A search using Ovid MEDLINE and Embase was initially conducted to identify studies on severe Plasmodium falciparum malaria that included information on treatment delay, such as fever duration (inception to 22nd September 2017). Studies identified included 5 case-control and 8 other observational clinical studies of SM and UM cases. Risk of bias was assessed using the Newcastle-Ottawa scale, and all studies were ranked as \u27Good\u27, scoring ≥7/10. Individual-patient data (IPD) were pooled from 13 studies of 3,989 (94.1% aged \u3c15 years) SM patients and 5,780 (79.6% aged \u3c15 years) UM cases in Benin, Malaysia, Mozambique, Tanzania, The Gambia, Uganda, Yemen, and Zambia. Definitions of SM were standardised across studies to compare treatment delay in patients with UM and different SM phenotypes using age-adjusted mixed-effects regression. The odds of any SM phenotype were significantly higher in children with longer delays between initial symptoms and arrival at the health facility (odds ratio [OR] = 1.33, 95% CI: 1.07-1.64 for a delay of \u3e24 hours versus ≤24 hours; p = 0.009). Reported illness duration was a strong predictor of presenting with severe malarial anaemia (SMA) in children, with an OR of 2.79 (95% CI:1.92-4.06; p \u3c 0.001) for a delay of 2-3 days and 5.46 (95% CI: 3.49-8.53; p \u3c 0.001) for a delay of \u3e7 days, compared with receiving treatment within 24 hours from symptom onset. We estimate that 42.8% of childhood SMA cases and 48.5% of adult SMA cases in the study areas would have been averted if all individuals were able to access treatment within the first day of symptom onset, if the association is fully causal. In studies specifically recording onset of nonsevere symptoms, long treatment delay was moderately associated with other SM phenotypes (OR [95% CI] \u3e3 to ≤4 days versus ≤24 hours: cerebral malaria [CM] = 2.42 [1.24-4.72], p = 0.01; respiratory distress syndrome [RDS] = 4.09 [1.70-9.82], p = 0.002). In addition to unmeasured confounding, which is commonly present in observational studies, a key limitation is that many severe cases and deaths occur outside healthcare facilities in endemic countries, where the effect of delayed or no treatment is difficult to quantify. CONCLUSIONS: Our results quantify the relationship between rapid access to treatment and reduced risk of severe disease, which was particularly strong for SMA. There was some evidence to suggest that progression to other severe phenotypes may also be prevented by prompt treatment, though the association was not as strong, which may be explained by potential selection bias, sample size issues, or a difference in underlying pathology. These findings may help assess the impact of interventions that improve access to treatment

    Segregation of Fluorescent Membrane Lipids into Distinct Micrometric Domains: Evidence for Phase Compartmentation of Natural Lipids?

    Get PDF
    Background: We recently reported that sphingomyelin (SM) analogs substituted on the alkyl chain by various fluorophores (e.g. BODIPY) readily inserted at trace levels into the plasma membrane of living erythrocytes or CHO cells and spontaneously concentrated into micrometric domains. Despite sharing the same fluorescent ceramide backbone, BODIPY-SM domains segregated from similar domains labelled by BODIPY-D-e-lactosylceramide (D-e-LacCer) and depended on endogenous SM. Methodology/Principal Findings. We show here that BODIPY-SM further differed from BODIPY-D-e-LacCer or -glucosylceramide (GlcCer) domains in temperature dependence, propensity to excimer formation, association with a glycosylphosphatidylinositol (GPI)-anchored fluorescent protein reporter, and lateral diffusion by FRAP, thus demonstrating different lipid phases and boundaries. Whereas BODIPY-D-e-LacCer behaved like BODIPY-GlcCer, its artificial stereoisomer, BODIPY-L-t-LacCer, behaved like BODIPY- and NBD-phosphatidylcholine (PC). Surprisingly, these two PC analogs also formed micrometric patches yet preferably at low temperature, did not show excimer, never associated with the GPI reporter and showed major restriction to lateral diffusion when photobleached in large fields. This functional comparison supported a three-phase micrometric compartmentation, of decreasing order: BODIPY-GSLs > -SM > -PC (or artificial L-t-LacCer). Co-existence of three segregated compartments was further supported by double labelling experiments and was confirmed by additive occupancy, up to ~70% cell surface coverage. Specific alterations of BODIPY-analogs domains by manipulation of corresponding endogenous sphingolipids suggested that distinct fluorescent lipid partition might reflect differential intrinsic propensity of endogenous membrane lipids to form large assemblies. Conclusions/Significance. We conclude that fluorescent membrane lipids spontaneously concentrate into distinct micrometric assemblies. We hypothesize that these might reflect preexisting compartmentation of endogenous PM lipids into non-overlapping domains of differential order: GSLs > SM > PC, resulting into differential self-adhesion of the two former, with exclusion of the latter

    Sicherung von Dämmen, Deichen und Stauanlagen : Handbuch für Theorie und Praxis ; Vol. V - 2015

    Get PDF
    Die Universität Siegen beschäftigt sich seit über 15 Jahren wissenschaftlich und im Bereich der anwendungsorientierten Forschung mit diesem Thema und hat dazu mittlerweile fünf Symposien durchgeführt. Mit der Veröffentlichung soll die langjährige Tradition als etablierte wissenschaftliche Plattform mit einem Wissensaustausch auf europäischer Ebene fortgesetzt werden. Die Bearbeitung dieser Thematik erfolgt auf der Basis der bewährten Kooperation zwischen Geotechnik und Wasserbau an der Universität Siegen. Aktuelle Ereignisse, wie z.B. die aus England oder Australien im Februar des Jahres 2014, machen uns aber auch deutlich, dass ein absoluter Schutz gegen Extremereignisse nicht möglich ist. Sie zeigen aber auch, dass dort wo technischer Hochwasserschutz konsequent umgesetzt wurde Schäden vermieden werden konnten. Wir sind nach den Ereignissen in den vergangenen Jahren aufgefordert wissenschaftlich noch leistungsfähigere und duktilere Systeme zu entwickeln. Weiter ist die Wissenschaft in der Pflicht, die Zivile Sicherheit im Hochwasser-schutz permanent zu bewerten, zu bearbeiten und ganzheitliche-interdisziplinäre und länderübergreifende Lösungen für die Zivilgesellschaft einzufordern

    Low incidence of SARS-CoV-2, risk factors of mortality and the course of illness in the French national cohort of dialysis patients

    Get PDF

    Accelerated surgery versus standard care in hip fracture (HIP ATTACK): an international, randomised, controlled trial

    Get PDF

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century
    corecore