270 research outputs found

    No evidence for intense, cold accretion on to YSOs from measurements of Li in T-Tauri stars

    Get PDF
    We have used medium-resolution spectra to search for evidence that proto-stellar objects accrete at high rates during their early 'assembly phase'. Models predict that depleted lithium and reduced luminosity in T-Tauri stars are key signatures of 'cold' high-rate accretion occurring early in a star's evolution. We found no evidence in 168 stars in NGC 2264 and the Orion nebula cluster for strong lithium depletion through analysis of veiling-corrected 6708Å lithium spectral line strengths. This suggests that 'cold' accretion at high rates (M = 5 × 10-4 M⊙ yr-1) occurs in the assembly phase of fewer than 0.5 per cent of 0.3 = M⊙ = 1.9M⊙ stars. We also find that the dispersion in the strength of the 6708Å lithium line might imply an age spread that is similar in magnitude to the apparent age spread implied by the luminosity dispersion seen in colour-magnitude diagrams. Evidence for weak lithium depletion (<10 per cent in equivalent width) that is correlated with luminosity is also apparent, but we are unable to determine whether age spreads or accretion at rates less than 5 × 10-4 M⊙ yr-1 are responsible. ©2013 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society.DJS is funded by a UK Science and Technology Facilities Council (STFC) studentship. The authors wish to thank Isabelle Baraffe for providing cold accretion models and useful discussions. Spectra were extracted and calibrated using the AF2 pipeline developed by Richard Jackson. This research is based on observations made with the William Herschel Telescope operated on the island of La Palma by the Isaac Newton Group (ING) in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. This research has made use of archival data products from the Two-Micron All-Sky Survey (2MASS), which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center, funded by the National Aeronautics and Space Administration (NASA) and the National Science Foundation

    A lithium depletion boundary age of 22 Myr for NGC 1960

    Get PDF
    We present a deep Cousins RI photometric survey of the open cluster NGC 1960, complete to R_C \simeq 22, I_C \simeq 21, that is used to select a sample of very low-mass cluster candidates. Gemini spectroscopy of a subset of these is used to confirm membership and locate the age-dependent "lithium depletion boundary" (LDB) --the luminosity at which lithium remains unburned in its low-mass stars. The LDB implies a cluster age of 22 +/-4 Myr and is quite insensitive to choice of evolutionary model. NGC 1960 is the youngest cluster for which a LDB age has been estimated and possesses a well populated upper main sequence and a rich low-mass pre-main sequence. The LDB age determined here agrees well with precise age estimates made for the same cluster based on isochrone fits to its high- and low-mass populations. The concordance between these three age estimation techniques, that rely on different facets of stellar astrophysics at very different masses, is an important step towards calibrating the absolute ages of young open clusters and lends confidence to ages determined using any one of them.Based on observations made with the INT operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência, Tecnologia e Inovação (Brazil) and Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina). CPB acknowledges receipt of a Science and Technology Facilities Council postgraduate studentship. SPL is supported by a RCUK fellowship

    Treatment of overlapping gaseous absorption with the correlated-k method in hot Jupiter and brown dwarf atmosphere models

    Get PDF
    This is the author accepted manuscript. The final version is available from EDP Sciences via the DOI in this record.The correlated-k method is frequently used to speed up radiation calculations in both one-dimensional and three-dimensional atmosphere models. An inherent difficulty with this method is how to treat overlapping absorption, i.e. absorption by more than one gas in a given spectral region. We have evaluated the applicability of three different methods in hot Jupiter and brown dwarf atmosphere models, all of which have been previously applied within models in the literature: (i) Random overlap, both with and without resorting and rebinning, (ii) equivalent extinction and (iii) pre-mixing of opacities, where (i) and (ii) combine k-coefficients for different gases to obtain k-coefficients for a mixture of gases, while (iii) calculates k-coefficients for a given mixture from the corresponding mixed line-by-line opacities. We find that the random overlap method is the most accurate and flexible of these treatments, and is fast enough to be used in one-dimensional models with resorting and rebinning. In three-dimensional models such as GCMs it is too slow, however, and equivalent extinction can provide a speed-up of at least a factor of three with only a minor loss of accuracy while at the same time retaining the flexibility gained by combining k-coefficients computed for each gas individually. Pre-mixed opacities are significantly less flexible, and we also find that particular care must be taken when using this method in order to to adequately resolve steep variations in composition at important chemical equilibrium boundaries. We use the random overlap method with resorting and rebinning in our one-dimensional atmosphere model and equivalent extinction in our GCM, which allows us to e.g. consistently treat the feedback of non-equilibrium chemistry on the total opacity and therefore the calculated P–T profiles in our modelsWe thank the referee, Mark Marley, for comments that significantly improved the paper. This work is partly supported by the European Research Council under the European Community’s Seventh Framework Programme (FP7/2007-2013 Grant Agreement No. 247060-PEPS and grant No. 320478-TOFU). D.S.A. acknowledges support from the NASA Astrobiology Program through the Nexus for Exoplanet System Science. J.M. acknowledges the support of a Met Office Academic Partnership secondment. The calculations for this paper were performed on the DiRAC Complexity machine, jointly funded by STFC and the Large Facilities Capital Fund of BIS, and the University of Exeter Super-computer, a DiRAC Facility jointly funded by STFC, the Large Facilities Capital Fund of BIS and the University of Exeter

    Pre-main-sequence isochrones - II. Revising star and planet formation time-scales

    Get PDF
    archiveprefix: arXiv primaryclass: astro-ph.SR keywords: techniques: photometric, stars: evolution, stars: formation, stars: fundamental parameters, Hertzsprung-Russell and colour-magnitude diagrams, stars: pre-main-sequence adsurl: http://adsabs.harvard.edu/abs/2013MNRAS.434..806B adsnote: Provided by the SAO/NASA Astrophysics Data SystemWe have derived ages for 13 young (<30 Myr) star-forming regions and find that they are up to a factor of 2 older than the ages typically adopted in the literature. This result has wide-ranging implications, including that circumstellar discs survive longer (≃ 10–12 Myr) and that the average Class I lifetime is greater (≃1 Myr) than currently believed. For each star-forming region, we derived two ages from colour–magnitude diagrams. First, we fitted models of the evolution between the zero-age main sequence and terminal-age main sequence to derive a homogeneous set of main-sequence ages, distances and reddenings with statistically meaningful uncertainties. Our second age for each star-forming region was derived by fitting pre-main-sequence stars to new semi-empirical model isochrones. For the first time (for a set of clusters younger than 50 Myr), we find broad agreement between these two ages, and since these are derived from two distinct mass regimes that rely on different aspects of stellar physics, it gives us confidence in the new age scale. This agreement is largely due to our adoption of empirical colour–Teff relations and bolometric corrections for pre-main-sequence stars cooler than 4000 K. The revised ages for the star-forming regions in our sample are: ∼2 Myr for NGC 6611 (Eagle Nebula; M 16), IC 5146 (Cocoon Nebula), NGC 6530 (Lagoon Nebula; M 8) and NGC 2244 (Rosette Nebula); ∼6 Myr for σ Ori, Cep OB3b and IC 348; ≃10 Myr for λ Ori (Collinder 69); ≃11 Myr for NGC 2169; ≃12 Myr for NGC 2362; ≃13 Myr for NGC 7160; ≃14 Myr for χ Per (NGC 884); and ≃20 Myr for NGC 1960 (M 36).CPMB is funded by a UK Science and Technology Facilities Council (STFC) studentship. SPL is supported by an RCUK fellowship. The authors would like to thank Charles D. H. Williams for maintaining the Xgrid facilities at the University of Exeter which were used to reduce the photometric data presented in this study. The authors thank Amelia Bayo for bringing to our attention the important work on the λ Ori region published in Bayo et al. (2011) and Bayo et al. (2012) which we overlooked in our original submission. The inclusion of these works does not change the results or conclusions of the paper. The authors also thank the referee for useful comments and constructive suggestions that have greatly improved this work. This research has made use of data obtained at the Isaac Newton Telescope which is operated on the island of La Palma by the Isaac Newton Group (ING) in the Spanish Observatorio del Roque de los Muchachos of the Institutio de Astrofisica de Canarias. This research has also made use of archival data products from the Two-Micron All-Sky Survey (2MASS), which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center, funded by the National Aeronautics and Space Administration (NASA) and the National Science Foundation

    Pre-main-sequence isochrones - III: The Cluster Collaboration isochrone server

    Get PDF
    We present an isochrone server for semi-empirical pre-main-sequence model isochrones in the following systems: Johnson–Cousins, Sloan Digital Sky Survey, Two-Micron All-Sky Survey, Isaac Newton Telescope (INT) Wide-Field Camera and INT Photometric Hα Survey (IPHAS)/UV-Excess Survey (UVEX). The server can be accessed via the Cluster Collaboration webpage http://www.astro.ex.ac.uk/people/timn/isochrones/. To achieve this, we have used the observed colours of member stars in young clusters with well-established age, distance and reddening to create fiducial loci in the colour–magnitude diagram. These empirical sequences have been used to quantify the discrepancy between the models and data arising from uncertainties in both the interior and atmospheric models, resulting in tables of semi-empirical bolometric corrections (BCs) in the various photometric systems. The model isochrones made available through the server are based on existing stellar interior models coupled with our newly derived semi-empirical BCs. As part of this analysis, we also present new cluster parameters for both the Pleiades and Praesepe, yielding ages of 135+20−11 and 665+14−7Myr as well as distances of 132 ± 2 and 184 ± 2 pc, respectively (statistical uncertainty only)

    Pre-main-sequence isochrones - III. The cluster collaboration isochrone server

    Get PDF
    We present an isochrone server for semi-empirical pre-main-sequence model isochrones in the following systems: Johnson-Cousins, Sloan Digital Sky Survey, Two-Micron All-Sky Survey, Isaac Newton Telescope (INT) Wide-Field Camera and INT Photometric Ha Survey (IPHAS)/UV-Excess Survey (UVEX). The server can be accessed via the Cluster Collaboration webpage http://www.astro.ex.ac.uk/people/timn/isochrones/. To achieve this, we have used the observed colours ofmember stars in young clusters with well-established age, distance and reddening to create fiducial loci in the colour-magnitude diagram. These empirical sequences have been used to quantify the discrepancy between the models and data arising from uncertainties in both the interior and atmospheric models, resulting in tables of semi-empirical bolometric corrections (BCs) in the various photometric systems. The model isochrones made available through the server are based on existing stellar interior models coupled with our newly derived semi-empirical BCs. As part of this analysis, we also present new cluster parameters for both the Pleiades and Praesepe, yielding ages of 135+20 -11 and 665+14 -7 Myr as well as distances of 132 ± 2 and 184 ± 2 pc, respectively (statistical uncertainty only).JMR is funded by a UK Science and Technology Facilities Council (STFC) studentship. EEM acknowledges support from the National Science Foundation (NSF) Award AST-1008908. The authors would like to thank Emanuele Tognelli for the updated set of Pisa models and John Stauffer for sharing his catalogue of Kron photometric measurements of Pleiades members. The authors would also like to thank the referee for comments which have vastly improved the clarity of the manuscript. This research has made use of data obtained at the Isaac Newton Telescope, which is operated on the island of La Palma by the Isaac Newton Group (ING) in the Spanish Observatorio del Roque de los Muchachos of the Institutio de Astrofisica de Canarias. This research has made use of archival data products from the Two-Micron All-Sky Survey (2MASS), which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center, funded by the National Aeronautics and Space Administration (NASA) and the National Science Foundation. This research has made use of public data from the SDSS. Funding for the SDSS was provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the US Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society and the Higher Education Funding Council for England. The SDSS was managed by the Astrophysical Research Consortium for the Participating Institutions

    Exploring the climate of Proxima B with the Met Office Unified Model

    Get PDF
    This is the author accepted manuscript. The final version is available from EDP Sciences via the DOI in this record.The corrigendum to this article is in ORE at: http://hdl.handle.net/10871/34331We present results of simulations of the climate of the newly discovered planet Proxima Centauri B, performed using the Met Office Unified Model (UM). We examine the responses of both an ‘Earth-like’ atmosphere and simplified nitrogen and trace carbon dioxide atmosphere to the radiation likely received by Proxima Centauri B. Additionally, we explore the effects of orbital eccentricity on the planetary conditions using a range of eccentricities guided by the observational constraints. Overall, our results are in agreement with previous studies in suggesting Proxima Centauri B may well have surface temperatures conducive to the presence of liquid water. Moreover, we have expanded the parameter regime over which the planet may support liquid water to higher values of eccentricity (& 0.1) and lower incident fluxes (881.7 W m−2 ) than previous work. This increased parameter space arises because of the low sensitivity of the planet to changes in stellar flux, a consequence of the stellar spectrum and orbital configuration. However, we also find interesting differences from previous simulations, such as cooler mean surface temperatures for the tidally-locked case. Finally, we have produced high resolution planetary emission and reflectance spectra, and highlight signatures of gases vital to the evolution of complex life on Earth (oxygen, ozone and carbon dioxide).I.B., J.M. and P.E. acknowledge the support of a Met Office Academic Partnership secondment. B.D. thanks the University of Exeter for support through a Ph.D. studentship. N.J.M. and J.G.’s contributions were in part funded by a Leverhulme Trust Research Project Grant, and in part by a University of Exeter College of Engineering, Mathematics and Physical Sciences studentship. We acknowledge use of the MONSooN system, a collaborative facility supplied under the Joint Weather and Climate Research Programme, a strategic partnership between the Met Office and the Natural Environment Research Council. This work also used the University of Exeter Supercomputer, a DiRAC Facility jointly funded by STFC, the Large Facilities Capital Fund of BIS and the University of Exeter

    Using the UM dynamical cores to reproduce idealised 3-D flows

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.Published by Copernicus Publications on behalf of the European Geosciences UnionWe demonstrate that both the current (New Dynamics), and next generation (ENDGame) dynamical cores of the UK Met Office global circulation model, the UM, reproduce consistently, the long-term, large-scale flows found in several published idealised tests. The cases presented are the Held-Suarez test, a simplified model of Earth (including a stratosphere), and a hypothetical tidally locked Earth. Furthermore, we show that using simplifications to the dynamical equations, which are expected to be justified for the physical domains and flow regimes we have studied, and which are supported by the ENDGame dynamical core, also produces matching long-term, large-scale flows. Finally, we present evidence for differences in the detail of the planetary flows and circulations resulting from improvements in the ENDGame formulation over New Dynamics.We would like to thank Paul Ullrich and Kevin Heng for their valuable comments, when reviewing this manuscript. We would also like to thank Tom Melvin for his expert advice, and both Charline Marzin and Douglas Boyd for technical help. This work is supported by the European Research Council under the European Community’s Seventh Framework Programme (FP7/2007-2013 Grant Agreement no. 247060) and by the Consolidated STFC grant ST/J001627/1. This work is also partly supported by the Royal Society award WM090065. The calculations for this paper were performed on the DiRAC Facility jointly funded by STFC, the Large Facilities Capital Fund of BIS, and the University of Exeter

    The Limits of the Primitive Equations of Dynamics for Warm, Slowly Rotating Small Neptunes and Super Earths (article)

    Get PDF
    This is the author accepted manuscript. The final version is available from American Astronomical Society / IOP Publishing via the DOI in this record.The dataset associated with this article is located in ORE at: https://doi.org/10.24378/exe.1023We present significant differences in the simulated atmospheric flow for warm, tidally-locked small Neptunes and super Earths (based on a nominal GJ 1214b) when solving the simplified, and commonly used, primitive dynamical equations or the full Navier-Stokes equations. The dominant prograde, superrotating zonal jet is markedly different between the simulations which are performed using practically identical numerical setups, within the same model. The differences arise due to the breakdown of the so-called `shallow-fluid' and traditional approximations, which worsens when rotation rates are slowed, and day{night temperature contrasts are increased. The changes in the zonal advection between simulations solving the full and simplified equations, give rise to significant differences in the atmospheric redistribution of heat, altering the position of the hottest part of the atmosphere and temperature contrast between the day and night sides. The implications for the atmospheric chemistry and, therefore, observations need to be studied with a model including a more detailed treatment of the radiative transfer and chemistry. Small Neptunes and super Earths are extremely abundant and important, potentially bridging the structural properties (mass, radius, composition) of terrestrial and gas giant planets. Our results indicate care is required when interpreting the output of models solving the primitive equations of motion for such planets.Leverhulme TrustScience and Technology Facilities CouncilEuropean Research Counci

    The effect of metallicity on the atmospheres of exoplanets with fully coupled 3D hydrodynamics, equilibrium chemistry, and radiative transfer (article)

    Get PDF
    This is the author accepted manuscript. The final version is available from EDP Sciences for European Southern Observatory (ESO) via the DOI in this record.The dataset associated with this article is located in ORE at: http://hdl.handle.net/10871/32593In this work we have performed a series of simulations of the atmosphere of GJ 1214b assuming different metallicities using the Met Office Unified Model (UM). The UM is a general circulation model (GCM) that solves the deep, nonhydrostatic equations of motion and uses a flexible and accurate radiative transfer scheme, based on the two-stream and correlated-k approximations, to calculate the heating rates. In this work we consistently couple a well-tested Gibbs energy minimisation scheme to solve for the chemical equilibrium abundances locally in each grid cell for a general set of elemental abundances, further improving the flexibility and accuracy of the model. As the metallicity of the atmosphere is increased we find significant changes in the dynamical and thermal structure, with subsequent implications for the simulated phase curve. The trends that we find are qualitatively consistent with previous works, though with quantitative differences. We investigate in detail the effect of increasing the metallicity by splitting the mechanism into constituents, involving the mean molecular weight, the heat capacity and the opacities. We find the opacity effect to be the dominant mechanism in altering the circulation and thermal structure. This result highlights the importance of accurately computing the opacities and radiative transfer in 3D GCMs.This work is partly supported by the European Research Council under the European Community’s Seventh Framework Programme (FP7/2007-2013 Grant Agreement No. 247060-PEPS and grant No. 320478-TOFU). BD acknowledges funding from the European Research Council (ERC) under the European Unions Seventh Framework Programme (FP7/2007-2013) / ERC grant agreement no. 336792 and thanks the University of Exeter for support through a PhD studentship. DSA acknowledges support from the NASA Astrobiology Program through the Nexus for Exoplanet System Science. NJM and JG’s contributions were in part funded by a Leverhulme Trust Research Project Grant, and in part by a University of Exeter College of Engineering, Mathematics and Physical Sciences studentship. This work used the DiRAC Complexity system, operated by the University of Leicester IT Services, which forms part of the STFC DiRAC HPC Facility. This equipment is funded by BIS National E-Infrastructure capital grant ST/K000373/1 and STFC DiRAC Operations grant ST/K0003259/1. DiRAC is part of the National E-Infrastructure. This work also used the University of Exeter Supercomputer, a DiRAC Facility jointly funded by STFC, the Large Facilities Capital Fund of BIS and the University of Exeter. Material produced using Met Office Software
    • …
    corecore