10 research outputs found

    Penetrance of biallelic SMARCAL1 mutations is associated with environmental and genetic disturbances of gene expression

    No full text
    Biallelic mutations of the DNA annealing helicase SMARCAL1 (SWI/SNF-related, matrix-associated, actindependent regulator of chromatin, subfamily a-like 1) cause Schimke immuno-osseous dysplasia (SIOD, MIM 242900), an incompletely penetrant autosomal recessive disorder. Using human, Drosophila and mouse models, we show that the proteins encoded by SMARCAL1 orthologs localize to transcriptionally active chromatin and modulate gene expression. We also show that, as found in SIOD patients, deficiency of the SMARCAL1 orthologs alone is insufficient to cause disease in fruit flies and mice, although such deficiency causes modest diffuse alterations in gene expression. Rather, disease manifests when SMARCAL1 deficiency interacts with genetic and environmental factors that further alter gene expression. We conclude that the SMARCAL1 annealing helicase buffers fluctuations in gene expression and that alterations in gene expression contribute to the penetrance of SIOD

    Lack of IL7R alpha expression in T cells is a hallmark of T-cell immunodeficiency in Schimke immuno-osseous dysplasia (SIOD)

    No full text
    Schimke immuno-osseous dysplasia (SIOD) is an autosomal recessive, fatal childhood disorder associated with skeletal dysplasia, renal dysfunction, and T-cell immunodeficiency. This disease is linked to biallelic loss-of-function mutations of the SMARCAL1 gene. Although recurrent infection, due to T-cell deficiency, is a leading cause of morbidity and mortality, the etiology of the T-cell immunodeficiency is unclear. Here, we demonstrate that the T cells of SIOD patients have undetectable levels of protein and mRNA for the IL-7 receptor alpha chain (IL7R alpha) and are unresponsive to stimulation with IL-7, indicating a loss of functional receptor. No pathogenic mutations were detected in the exons of IL7R in these patients; however, CpG sites in the IL7R promoter were hypermethylated in SIOD T cells. We propose therefore that the lack of IL7R alpha expression, associated with hypermethylation of the IL7R promoter, in T cells and possibly their earlier progenitors, restricts T-cell development in SIOD patients. (C) 2015 Elsevier Inc. All rights reserved

    A review on the formation, causes, measurement, implications and reduction of neps during cotton processing

    No full text

    Determination of cholesterol in blood. Part 1

    No full text
    corecore