1,744 research outputs found

    Metal tube reducer is inexpensive and simple to operate

    Get PDF
    Low-cost metal tube reducer accepts tubing up to 1 inch outer diameter and can reduce this diameter to less than 1/2 inch with controlled wall thickness. This device can reduce all of the tube without waste. It produces extremely good surface finishes

    Hydraulic fluid serves as mandrel for small diameter refractory tube drawing

    Get PDF
    Sealing hydraulic fluid within a tube and passing the tube through a reducing die produces high quality small diameter refractory metal tubing. The encased fluid eliminates the need for mandrel or ductile core removal and drawing can proceed with less handling operations

    Ductile mandrel and parting compound facilitate tube drawing

    Get PDF
    Refractory tubing is warm drawn over a solid ductile mandrel with a powder parting compound packed between mandrel and the tubes inner surface. This method applies also to the coextrusion of a billet and a ductile mandrel

    Fabrication techniques developed for small- diameter, thin-wall tungsten and tungsten alloy tubing

    Get PDF
    Report describes methods for the fabrication of tungsten and tungsten alloys into small-diameter, thin-wall tubing of nuclear quality. The tungsten, or tungsten alloy tube blanks are produced by double extrusion. Plug-drawing has emerged as an excellent secondary fabrication technique for the reduction of the overall tube dimensions

    Positively Correlated miRNA-miRNA Regulatory Networks in Mouse Frontal Cortex During Early Stages of Alcohol Dependence

    Get PDF
    Although the study of gene regulation via the action of specific microRNAs (miRNAs) has experienced a boom in recent years, the analysis of genome-wide interaction networks among miRNAs and respective targeted mRNAs has lagged behind. MicroRNAs simultaneously target many transcripts and fine-tune the expression of genes through cooperative/combinatorial targeting. Therefore, they have a large regulatory potential that could widely impact development and progression of diseases, as well as contribute unpredicted collateral effects due to their natural, pathophysiological, or treatment-induced modulation. We support the viewpoint that whole mirnome-transcriptome interaction analysis is required to better understand the mechanisms and potential consequences of miRNA regulation and/or deregulation in relevant biological models. In this study, we tested the hypotheses that ethanol consumption induces changes in miRNA-mRNA interaction networks in the mouse frontal cortex and that some of the changes observed in the mouse are equivalent to changes in similar brain regions from human alcoholics. Results: miRNA-mRNA interaction networks responding to ethanol insult were identified by differential expression analysis and weighted gene coexpression network analysis (WGCNA). Important pathways (coexpressed modular networks detected by WGCNA) and hub genes central to the neuronal response to ethanol are highlighted, as well as key miRNAs that regulate these processes and therefore represent potential therapeutic targets for treating alcohol addiction. Importantly, we discovered a conserved signature of changing miRNAs between ethanol-treated mice and human alcoholics, which provides a valuable tool for future biomarker/diagnostic studies in humans. We report positively correlated miRNA-mRNA expression networks that suggest an adaptive, targeted miRNA response due to binge ethanol drinking. Conclusions: This study provides new evidence for the role of miRNA regulation in brain homeostasis and sheds new light on current understanding of the development of alcohol dependence. To our knowledge this is the first report that activated expression of miRNAs correlates with activated expression of mRNAs rather than with mRNA downregulation in an in vivo model. We speculate that early activation of miRNAs designed to limit the effects of alcohol-induced genes may be an essential adaptive response during disease progression.NIAAA 5R01AA012404, 5P20AA017838, 5U01AA013520, P01AA020683, 5T32AA007471-24/25Waggoner Center for Alcohol and Addiction Researc

    AQUARIUM EXPERIMENTS COMPARING THE FEEDING BEHAVIOUR OF ROCK LOBSTER JASUS LALANDII ON ABALONE AND SEA URCHINS AT TWO SITES ON THE WEST COAST OF SOUTH AFRICA

    Get PDF
    Predation by the rock lobster Jasus lalandii is influential in regulating the composition of shallow-reef communities on the west coast of South Africa. Two previous and independent studies addressing this topic, but conducted 600 km apart (one in Cape Town and the other in Port Nolloth on the west coast of South Africa) and using different experimental protocols, revealed contradictory results regarding the feeding behaviour of J. lalandii. The Port Nolloth study showed that juvenile abalone Haliotis midae hiding under sea urchins Parechinus angulosus were safe from predation by rock lobsters, which seemed to prefer the sea urchins as food. However, the Cape Town study showed that rock lobsters preferentially selected juvenile abalone over sea urchins. Because of the importance of these results to abalone ranching and the South African abalone fishery, the experiments were repeated at the two study sites, using a standardized experimental protocol. Rock lobsters from both sites showed a strong preference for juvenile abalone over sea urchins, even in the presence of kelp Ecklonia maxima. There was no significant difference (F3.92 = 0.09, p &#62 0.1) in abalone consumption by rock lobsters between the two sites. Therefore, at least in the absence of preferred prey such as mussels, sea urchins appear to provide only limited protection to juvenile abalone from rock lobsters.Afr. J. mar. Sci. 25: 377–38

    Requirements for the spatial storage effect are weakly evident for common species in natural annual plant assemblages

    Get PDF
    Coexistence in spatially varying environments is theorised to be promoted by a variety of mechanisms including the spatial storage effect. The spatial storage effect promotes coexistence when: (i) species have unique vital rate responses to their spatial environment and, when abundant, (ii) experience stronger competition in the environmental patches where they perform better. In a naturally occurring southwest Western Australian annual plant system we conducted a neighbour removal experiment involving eleven focal species growing in high-abundance populations. Specifically, we measured species' fecundity across a variety of environmental gradients in both the presence and absence of neighbours. For the environmental variables that we measured, there was only limited evidence for species-specific responses to the environment, with a composite variable describing overstory cover and leaf litter cover being the best predictor of fecundity for a subset of focal species. In addition, although we found strong evidence for intra-specific competition, positive environment-competition covariance was only detected for one species. Thus, positive environment-competition covariance may not be as common as expected in populations of species growing at high abundance, at least when tested in natural assemblages. Our findings highlight the inherent limitations of using natural assemblages to study spatial coexistence mechanisms, and we urge empirical ecologists to take these limitations into account when designing future experiments

    Evolutionary relationships in Panicoid grasses based on plastome phylogenomics (Panicoideae; Poaceae)

    Get PDF
    Background: Panicoideae are the second largest subfamily in Poaceae (grass family), with 212 genera and approximately 3316 species. Previous studies have begun to reveal relationships within the subfamily, but largely lack resolution and/or robust support for certain tribal and subtribal groups. This study aims to resolve these relationships, as well as characterize a putative mitochondrial insert in one linage. Results: 35 newly sequenced Panicoideae plastomes were combined in a phylogenomic study with 37 other species: 15 Panicoideae and 22 from outgroups. A robust Panicoideae topology largely congruent with previous studies was obtained, but with some incongruences with previously reported subtribal relationships. A mitochondrial DNA (mtDNA) to plastid DNA (ptDNA) transfer was discovered in the Paspalum lineage. Conclusions: The phylogenomic analysis returned a topology that largely supports previous studies. Five previously recognized subtribes appear on the topology to be non-monophyletic. Additionally, evidence for mtDNA to ptDNA transfer was identified in both Paspalum fimbriatum and P. dilatatum, and suggests a single rare event that took place in a common progenitor. Finally, the framework from this study can guide larger whole plastome sampling to discern the relationships in Cyperochloeae, Steyermarkochloeae, Gynerieae, and other incertae sedis taxa that are weakly supported or unresolved.Fil: Burke, Sean V.. Northern Illinois University; Estados UnidosFil: Wysocki, William P.. Northern Illinois University; Estados UnidosFil: Zuloaga, Fernando Omar. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Botánica Darwinion. Academia Nacional de Ciencias Exactas, Físicas y Naturales. Instituto de Botánica Darwinion; ArgentinaFil: Craine, Joseph M.. Jonah Ventures; Estados UnidosFil: Pires, J. Chris. University of Missouri; Estados UnidosFil: Edger, Patrick P.. Michigan State University; Estados UnidosFil: Mayfield Jones, Dustin. Donald Danforth Plant Science Center; Estados UnidosFil: Clark, Lynn G.. Iowa State University; Estados UnidosFil: Kelchner, Scot A.. University of Idaho; Estados UnidosFil: Duvall, Melvin R.. Northern Illinois University; Estados Unido

    Indoor air pollution from residential stoves: examining the flooding of particulate matter into homes during real-world use

    Get PDF
    This study concerns the levels of particulate matter (PM2.5 and PM1) released by residential stoves inside the home during ‘real world’ use. Focusing on stoves that were certified by the UK’s Department of Environment, Food, and Rural Affairs (DEFRA), PM sensors were placed in the vicinity of 20 different stoves over four weeks, recording 260 uses. The participants completed a research diary in order to provide information on time lit, amount and type of fuel used, and duration of use, among other details. Multivariate statistical tools were used in order to analyse indoor PM concentrations, averages, intensities, and their relationship to aspects of stove management. The study has four core findings. First, the daily average indoor PM concentrations when a stove was used were higher for PM2.5 by 66.24% and PM1 by 69.49% than those of the non-use control group. Second, hourly peak averages are higher for PM2.5 by 55.34% and for PM1 by 57.09% than daily averages, showing that PM is ‘flooding’ into indoor areas through normal use. Third, the peaks that are derived from these ’flooding’ incidents are associated with the number of fuel pieces used and length of the burn period. This points to the opening of the stove door as a primary mechanism for introducing PM into the home. Finally, it demonstrates that the indoor air pollution being witnessed is not originating from outside the home. Taken together, the study demonstrates that people inside homes with a residential stove are at risk of exposure to high intensities of PM2.5 and PM1 within a short period of time through normal use. It is recommended that this risk be reflected in the testing and regulation of residential stoves
    corecore